Skip to main content

BDE-47 and 6-OH-BDE-47 modulate calcium homeostasis in primary fetal human neural progenitor cells via ryanodine receptor-independent mechanisms

Abstract

Polybrominated diphenyl ethers (PBDEs) are bioaccumulating flame retardants found in rising concentrations in human tissue. Epidemiological and animal studies have raised concern for their potential to induce developmental neurotoxicity (DNT). Considering the essential role of calcium homeostasis in neurodevelopment, PBDE-induced disturbance of intracellular calcium concentration ([Ca2+]i) may underlie PBDE-induced DNT. To test this hypothesis, we investigated acute effects of BDE-47 and 6-OH-BDE-47 on [Ca2+]i in human neural progenitor cells (hNPCs) and unraveled involved signaling pathways. Short-time differentiated hNPCs were exposed to BDE-47, 6-OH-BDE-47, and multiple inhibitors/stimulators of presumably involved signaling pathways to determine possible effects on [Ca2+]i by single-cell microscopy with the fluorescent dye Fura-2. Initial characterization of calcium signaling pathways confirmed the early developmental stage of hNPCs. In these cells, BDE-47 (2 μM) and 6-OH-BDE-47 (0.2 μM) induce [Ca2+]i transients. This increase in [Ca2+]i is due to extracellular Ca2+ influx and intracellular release of Ca2+, mainly from the endoplasmic reticulum (ER). While extracellular Ca2+ seems to enter the cytoplasm upon 6-OH-BDE-47 by interfering with the cell membrane and independent of Ca2+ ion channels, ER-derived Ca2+ is released following activation of protein lipase C and inositol 1,4,5-trisphosphate receptor, but independently of ryanodine receptors. These findings illustrate that immature developing hNPCs respond to low concentrations of 6-OH-BDE-47 by an increase in [Ca2+]i and provide new mechanistic explanations for such BDE-induced calcium disruption. Thus, these data support the possibility of a critical window of PBDE exposure, i.e., early human brain development, which has to be acknowledged in risk assessment.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Athanasiadou M, Cuadra SN, Marsh G, Bergman A, Jakobsson K (2008) Polybrominated diphenyl ethers (PBDEs) and bioaccumulative hydroxylated PBDE metabolites in young humans from Managua, Nicaragua. Environ Health Perspect 116:400–408

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baumann N, Pham-Dinh D (2001) Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev 81:871–927

    CAS  PubMed  Google Scholar 

  • Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21

    Article  CAS  PubMed  Google Scholar 

  • Brown AD (1978) Compatible solutes and extreme water stress in eukaryotic micro-organisms. Adv Microb Physiol 17:181–242

    Article  CAS  PubMed  Google Scholar 

  • Butt AM (2011) ATP: a ubiquitous gliotransmitter integrating neuron–glial networks. Semin Cell Dev Biol 22(2):205–213

    Article  CAS  PubMed  Google Scholar 

  • Ciccolini F, Collins TJ, Sudhoelter J, Lipp P, Berridge MJ, Bootman MD (2003) Local and global spontaneous calcium events regulate neurite outgrowth and onset of GABAergic phenotype during neural precursor differentiation. J Neurosci 23:103–111

    CAS  PubMed  Google Scholar 

  • Costa LG, Giordano G (2007) Developmental neurotoxicity of polybrominated diphenyl ether (PBDE) flame retardants. Neurotoxicology 28:1047–1067

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Delmas P, Brown DA (2002) Junctional signaling microdomains: bridging the gap between the neuronal cell surface and Ca2+ stores. Neuron 36:787–790

    Article  CAS  PubMed  Google Scholar 

  • Dingemans MM, Ramakers GM, Gardoni F, van Kleef RG, Bergman A, Di Luca M, van den Berg M, Westerink RH, Vijverberg HP (2007) Neonatal exposure to brominated flame retardant BDE-47 reduces long-term potentiation and postsynaptic protein levels in mouse hippocampus. Environ Health Perspect 115:865–870

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dingemans MM, de Groot A, van Kleef RG, Bergman A, van den Berg M, Vijverberg HP, Westerink RH (2008) Hydroxylation increases the neurotoxic potential of BDE-47 to affect exocytosis and calcium homeostasis in PC12 cells. Environ Health Perspect 116:637–643

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dingemans MM, Heusinkveld HJ, Bergman A, van den Berg M, Westerink RH (2010) Bromination pattern of hydroxylated metabolites of BDE-47 affects their potency to release calcium from intracellular stores in PC12 cells. Environ Health Perspect 118:519–525

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dingemans MM, van den Berg M, Westerink RH (2011) Neurotoxicity of brominated flame retardants: (in)direct effects of parent and hydroxylated polybrominated diphenyl ethers on the (developing) nervous system. Environ Health Perspect 119:900–907

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ebert AD, McMillan EL, Svendsen CN (2008) Isolating, expanding, and infecting human and rodent fetal neural progenitor cells. Curr Protoc Stem Cell Biol Chap 2, Unit 2D.2

  • Eskenazi B, Chevrier J, Rauch SA, Kogut K, Harley KG, Johnson C, Trujillo C, Sjödin A, Bradman A (2013) In utero and childhood polybrominated diphenyl ether (PBDE) exposures and neurodevelopment in the CHAMACOS study. Environ Health Perspect 121:257–262

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Faure AV, Grunwald D, Moutin MJ, Hilly M, Mauger JP, Marty I, De Waard M, Villaz M, Albrieux M ( 2001) Developmental expression of the calcium release channels during early neurogenesis of the mouse cerebral cortex. Eur J Neurosci 14(10):1613–1622

    Article  CAS  PubMed  Google Scholar 

  • Fessenden JD, Wang Y, Moore RA, Chen SR, Allen PD, Pessah IN (2000) Divergent functional properties of ryanodine receptor types 1 and 3 expressed in a myogenic cell line. Biophys J 79:2509–2525

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fonnum F, Mariussen E (2009) Mechanisms involved in the neurotoxic effects of environmental toxicants such as polychlorinated biphenyls and brominated flame retardants. J Neurochem 111:1327–1347

    Article  CAS  PubMed  Google Scholar 

  • Frederiksen M, Vorkamp K, Thomsen M, Knudsen LE (2009) Human internal and external exposure to PBDEs—a review of levels and sources. Int J Hyg Environ Health 212:109–134

    Article  CAS  PubMed  Google Scholar 

  • Fritsche E, Cline JE, Nguyen NH, Scanlan TS, Abel J (2005) Polychlorinated biphenyls disturb differentiation of normal human neural progenitor cells: clue for involvement of thyroid hormone receptors. Environ Health Perspect 113:871–876

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fritsche E, Gassmann K, Schreiber T (2011) Neurospheres as a model for developmental neurotoxicity testing. Methods Mol Biol 758:99–114

    Article  CAS  PubMed  Google Scholar 

  • Gafni J, Wong PW, Pessah IN (2004) Non-coplanar 2,2’,3,5’,6-pentachlorobiphenyl (PCB 95) amplifies ionotropic glutamate receptor signaling in embryonic cerebellar granule neurons by a mechanism involving ryanodine receptors. Toxicol Sci 77:72–82

    Article  CAS  PubMed  Google Scholar 

  • Gascon M, Vrijheid M, Martínez D, Forns J, Grimalt JO, Torrent M, Sunyer J (2011) Effects of pre and postnatal exposure to low levels of polybromodiphenyl ethers on neurodevelopment and thyroid hormone levels at 4 years of age. Environ Int 37:605–611

    Article  CAS  PubMed  Google Scholar 

  • Gassmann K, Abel J, Bothe H, Haarmann-Stemmann T, Merk HF, Quasthoff KN, Rockel TD, Schreiber T, Fritsche E (2010) Species-specific differential AhR expression protects human neural progenitor cells against developmental neurotoxicity of PAHs. Environ Health Perspect 118(11):1571–1577

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Haak LL, Song LS, Molinski TF, Pessah IN, Cheng H, Russell JT (2001) Sparks and puffs in oligodendrocyte progenitors: cross talk between ryanodine receptors and inositol trisphosphate receptors. J Neurosci 21:3860–3870

    CAS  PubMed  Google Scholar 

  • Harishchandra RK, Wulff S, Lentzen G, Neuhaus T, Galla HJ (2010) The effect of compatible solute ectoines on the structural organization of lipid monolayer and bilayer membranes. Biophys Chem 150:37–46

    Article  CAS  PubMed  Google Scholar 

  • He M, McCarthy KD (1994) Oligodendroglial signal transduction systems are developmentally regulated. J Neurochem 63:501–508

    Article  CAS  PubMed  Google Scholar 

  • Herbstman JB, Sjodin A, Kurzon M, Lederman SA, Jones RS, Rauh V, Needham LL, Tang D, Niedzwiecki M, Wang RY, Perera F (2010) Prenatal exposure to PBDEs and neurodevelopment. Environ Health Perspect 118(5):712–719

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Inglefield JR, Shafer TJ (2000a) Polychlorinated biphenyl-stimulation of Ca(2+) oscillations in developing neocortical cells: a role for excitatory transmitters and L-type voltage-sensitive Ca(2+) channels. J Pharmacol Exp Ther 295:105–113

    CAS  PubMed  Google Scholar 

  • Inglefield JR, Shafer TJ (2000b) Perturbation by the PCB mixture Aroclor 1254 of GABA(A) receptor-mediated calcium and chloride responses during maturation in vitro of rat neocortical cells. Toxicol Appl Pharmacol 164:184–195

    Article  CAS  PubMed  Google Scholar 

  • Inglefield JR, Mundy WR, Shafer TJ (2001) Inositol 1,4,5-triphosphate receptor-sensitive Ca(2+) release, store-operated Ca(2+) entry, and cAMP responsive element binding protein phosphorylation in developing cortical cells following exposure to polychlorinated biphenyls. J Pharmacol Exp Ther 297:762–773

    CAS  PubMed  Google Scholar 

  • Kafitz KW, Meier SD, Stephan J, Rose CR (2008) Developmental profile and properties of sulforhodamine 101—labeled glial cells in acute brain slices of rat hippocampus. J Neurosci Methods 169:84–92

    Article  CAS  PubMed  Google Scholar 

  • Kiciński M, Viaene MK, Den Hond E, Schoeters G, Covaci A, Dirtu AC, Nelen V, Bruckers L, Croes K, Sioen I, Baeyens W, Van Larebeke N, Nawrot TS (2012) Neurobehavioral function and low-level exposure to brominated flame retardants in adolescents: a cross-sectional study. Environ Health 11:86. doi:10.1186/1476-069X-11-86

    Article  PubMed Central  PubMed  Google Scholar 

  • Kim KH, Bose DD, Ghogha A, Riehl J, Zhang R, Barnhart CD, Lein PJ, Pessah IN (2011) Para- and ortho-substitutions are key determinants of polybrominated diphenyl ether activity toward ryanodine receptors and neurotoxicity. Envrion Health Perspect 119:519–526

    Article  CAS  Google Scholar 

  • Kodavanti PR, Ward TR (2005) Differential effects of commercial polybrominated diphenyl ether and polychlorinated biphenyl mixtures on intracellular signaling in rat brain in vitro. Toxicol Sci 85:952–962

    Article  CAS  PubMed  Google Scholar 

  • Lentzen G, Schwarz T (2006) Extremolytes: natural compounds from extremophiles for versatile applications. Appl Microbiol Biotechnol 72:623–634

    Article  CAS  PubMed  Google Scholar 

  • Maric D, Maric I, Barker JL (2000) Developmental changes in cell calcium homeostasis during neurogenesis of the embryonic rat cerebral cortex. Cereb Cortex 10:561–573

    Article  CAS  PubMed  Google Scholar 

  • Marsh G, Hu J, Jakobsson E, Rahm S, Bergman A (1999) Synthesis and characterization of 32 polybrominated diphenyl ethers. Environ Sci Technol 33:3033–3037

    Article  CAS  Google Scholar 

  • Marsh G, Athanasiadou M, Athanassiadis I, Sandholm A (2006) Identification of hydroxylated metabolites in 2,2’,4,4’-tetrabromodiphenyl ether exposed rats. Chemosphere 63:690–697

    Article  CAS  PubMed  Google Scholar 

  • Matyash M, Matyash V, Nolte C, Sorrentino V, Kettenmann H (2002) Requirement of functional ryanodine receptor type 3 for astrocyte migration. FASEB J 16:84–86

    CAS  PubMed  Google Scholar 

  • Meier SD, Kafitz KW, Rose CR (2008) Developmental profile and mechanisms of GABA-induced calcium signaling in hippocampal astrocytes. Glia 56:1127–1137

    Article  PubMed  Google Scholar 

  • Moors M, Cline JE, Abel J, Fritsche E (2007) ERK-dependent and -independent pathways trigger human neural progenitor cell migration. Toxicol Appl Pharmacol 221:57–67

    Article  CAS  PubMed  Google Scholar 

  • Moors M, Rockel TD, Abel J, Cline JE, Gassmann K, Schreiber T, Schuwald J, Weinmann N, Fritsche E (2009) Human neurospheres as three-dimensional cellular systems for developmental neurotoxicity testing. Environ Health Perspect 117:1131–1138

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moors M, Vudattu NK, Abel J, Kramer U, Rane L, Ulfig N, Ceccatelli S, Seyfert-Margolies V, Fritsche E, Maeurer MJ (2010) Interleukin-7 (IL-7) and IL-7 splice variants affect differentiation of human neural progenitor cells. Genes Immun 11:11–20

    Article  CAS  PubMed  Google Scholar 

  • Owens DF, Flint AC, Dammerman RS, Kriegstein AR (2000) Calcium dynamics of neocortical ventricular zone cells. Dev Neurosci 22:25–33

    Article  CAS  PubMed  Google Scholar 

  • Pessah IN, Cherednichenko G, Lein PJ (2010) Minding the calcium store: ryanodine receptor activation as a convergent mechanism of PCB toxicity. Pharmacol Ther 125:260–285

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Piper DR, Mujtaba T, Rao MS, Lucero MT (2000) Immunocytochemical and physiological characterization of a population of cultured human neural precursors. J Neurophysiol 84(1):534–548

    CAS  PubMed  Google Scholar 

  • Qiu X, Bigsby RM, Hites RA (2009) Hydroxylated metabolites of polybrominated diphenyl ethers in human blood samples from the United States. Environ Health Perspect 117:93–98

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255:1707–1710

    Article  CAS  PubMed  Google Scholar 

  • Reynolds BA, Tetzlaff W, Weiss S (1992) A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J Neurosci 12:4565–4574

    CAS  PubMed  Google Scholar 

  • Rice D, Barone S Jr (2000) Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect 108(Suppl 3):511–533

    Article  PubMed Central  PubMed  Google Scholar 

  • Roze E, Meijer L, Bakker A, Van Braeckel KN, Sauer PJ, Bos AF (2009) Prenatal exposure to organohalogens, including brominated flame retardants, influences motor, cognitive, and behavioral performance at school age. Environ Health Perspect 117:1953–1958

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schreiber T, Gassmann K, Götz C, Hübenthal U, Moors M, Krause G, Merk HF, Nguyen NH, Scanlan TS, Abel J, Rose CR, Fritsche E (2010) Polybrominated diphenyl ethers induce developmental neurotoxicity in a human in vitro model: evidence for endocrine disruption. Environ Health Perpect 118:572–578

    Article  CAS  Google Scholar 

  • Staskal DF, Hakk H, Bauer D, Diliberto JJ, Birnbaum LS (2006) Toxicokinetics of polybrominated diphenyl ether congeners 47, 99, 100, and 153 in mice. Toxicol Sci 94:28–37

    Article  CAS  PubMed  Google Scholar 

  • Svendsen CN, ter Borg MG, Armstrong RJ, Rosser AE, Chandran S, Ostenfeld T, Caldwell MA (1998) A new method for the rapid and long term growth of human neural precursor cells. J Neurosci Methods 85:141–152

    Article  CAS  PubMed  Google Scholar 

  • Takeda M, Nelson DJ, Soliven B (1995) Calcium signaling in cultured rat oligodendrocytes. Glia 14:225–236

    Article  CAS  PubMed  Google Scholar 

  • Tan Y, Chen CH, Lawrence D, Carpenter DO (2004) Ortho-substituted PCBs kill cells by altering membrane structure. Toxicol Sci 80:54–59

    Article  CAS  PubMed  Google Scholar 

  • Tegenge MA, Rockel TD, Fritsche E, Bicker G (2011) Nitric oxide stimulates human neural progenitor cell migration via cGMP-mediated signal transduction. Cell Mol Life Sci 68:2089–2099

    Article  CAS  PubMed  Google Scholar 

  • Ward CW, Protasi F, Castillo D, Wang Y, Chen SR, Pessah IN, Allen PD, Schneider MF (2001) Type 1 and type 3 ryanodine receptors generate different Ca(2+) release event activity in both intact and permeabilized myotubes. Biophys J 81:3216–3230

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu G, Broadbelt KG, Haynes RL, Folkerth RD, Borenstein NS, Belliveau RA, Trachtenberg FL, Volpe JJ, Kinney HC (2011) Late development of the GABAergic system in the human cerebral cortex and white matter. J Neuropathol Exp Neurol 70:841–858

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu K, He Y, Yeung LW, Lam PK, Wu RS, Zhou B (2008) DE-71-induced apoptosis involving intracellular calcium and the Bax–mitochondria–caspase protease pathway in human neuroblastoma cells in vitro. Toxicol Sci 104:341–351

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge the expert technical help of Ulrike Huebenthal and thank Marta Barenys for critical reading of the manuscript. Parts of this project were funded by the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU), by the German Research Foundation (DFG GRK1427), by the Research Commission of the Department of Medicine, Heinrich-Heine University Duesseldorf and the Faculty of Veterinary Medicine, Utrecht University. The authors declare no actual or potential competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellen Fritsche.

Additional information

Kathrin Gassmann, Timm Schreiber, and Milou M. L. Dingemans have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 437 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gassmann, K., Schreiber, T., Dingemans, M.M.L. et al. BDE-47 and 6-OH-BDE-47 modulate calcium homeostasis in primary fetal human neural progenitor cells via ryanodine receptor-independent mechanisms. Arch Toxicol 88, 1537–1548 (2014). https://doi.org/10.1007/s00204-014-1217-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-014-1217-7

Keywords