Skip to main content

A 3D in vitro model of differentiated HepG2 cell spheroids with improved liver-like properties for repeated dose high-throughput toxicity studies

Abstract

Immortalized hepatocyte cell lines show only a weak resemblance to primary hepatocytes in terms of gene expression and function, limiting their value in predicting drug-induced liver injury (DILI). Furthermore, primary hepatocytes cultured on two-dimensional tissue culture plastic surfaces rapidly dedifferentiate losing their hepatocyte functions and metabolic competence. We have developed a three-dimensional in vitro model using extracellular matrix-based hydrogel for long-term culture of the human hepatoma cell line HepG2. HepG2 cells cultured in this model stop proliferating, self-organize and differentiate to form multiple polarized spheroids. These spheroids re-acquire lost hepatocyte functions such as storage of glycogen, transport of bile salts and the formation of structures resembling bile canaliculi. HepG2 spheroids also show increased expression of albumin, urea, xenobiotic transcription factors, phase I and II drug metabolism enzymes and transporters. Consistent with this, cytochrome P450-mediated metabolism is significantly higher in HepG2 spheroids compared to monolayer cultures. This highly differentiated phenotype can be maintained in 384-well microtiter plates for at least 28 days. Toxicity assessment studies with this model showed an increased sensitivity in identifying hepatotoxic compounds with repeated dosing regimens. This simple and robust high-throughput-compatible methodology may have potential for use in toxicity screening assays and mechanistic studies and may represent an alternative to animal models for studying DILI.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Abe K, Bridges AS, Brouwer KL (2009) Use of sandwich-cultured human hepatocytes to predict biliary clearance of angiotensin II receptor blockers and HMG-CoA reductase inhibitors. Drug Metab Dispos 37(3):447–452

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  2. Asthana A, Kisaalita WS (2012) Microtissue size and hypoxia in HTS with 3D cultures. Drug Discov Today 17(15–16):810–817

    PubMed  Article  Google Scholar 

  3. Bahrami A, Truong LD, Ro JY (2008) Undifferentiated tumor: true identity by immunohistochemistry. Arch Pathol Lab Med 132(3):326–348

    PubMed  Google Scholar 

  4. Beggs KM, Fullerton AM, Miyakawa K, Ganey PE, Roth RA (2014) Molecular mechanisms of hepatocellular apoptosis induced by trovafloxacin-tumor necrosis factor-alpha interaction. Toxicol Sci 137(1):91–101

    CAS  PubMed  Article  Google Scholar 

  5. Chen G, Li S, Dong X et al (2012) Investigation of testosterone, androstenone, and estradiol metabolism in HepG2 cells and primary culture pig hepatocytes and their effects on 17betaHSD7 gene expression. PLoS ONE 7(12):e52255

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  6. Choi MH, Skipper PL, Wishnok JS, Tannenbaum SR (2005) Characterization of testosterone 11 beta-hydroxylation catalyzed by human liver microsomal cytochromes P450. Drug Metab Dispos 33(6):714–718

    CAS  PubMed  Article  Google Scholar 

  7. de Waart DR, Hausler S, Vlaming ML et al (2010) Hepatic transport mechanisms of cholyl-L-lysyl-fluorescein. J Pharmacol Exp Ther 334(1):78–86

    PubMed  Article  Google Scholar 

  8. di Masi A, De Marinis E, Ascenzi P, Marino M (2009) Nuclear receptors CAR and PXR: Molecular, functional, and biomedical aspects. Mol Asp Med 30(5):297–343

    Article  Google Scholar 

  9. Fattinger K, Funk C, Pantze M et al (2001) The endothelin antagonist bosentan inhibits the canalicular bile salt export pump: a potential mechanism for hepatic adverse reactions. Clin Pharmacol Ther 69(4):223–231

    CAS  PubMed  Article  Google Scholar 

  10. FDA guidance for drug interactions-study design, data analysis, implications for dosing and labeling recommendations, CDER, 2012 Feb. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm292362.pdf. Accessed: 31 Jan 2014

  11. Fey SJ, Wrzesinski K (2012) Determination of drug toxicity using 3D spheroids constructed from an immortal human hepatocyte cell line. Toxicol Sci 127(2):403–411

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  12. Fredriksson L, Herpers B, Benedetti G et al (2011) Diclofenac inhibits tumor necrosis factor-Œ±-induced nuclear factor-Œ∫B activation causing synergistic hepatocyte apoptosis. Hepatology 53(6):2027–2041

    CAS  PubMed  Article  Google Scholar 

  13. Godoy P, Hewitt NJ, Albrecht U et al (2013) Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol 87(8):1315–1530

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  14. Guengerich FP (2006) Cytochrome P450 s and other enzymes in drug metabolism and toxicity. AAPS J 8(1):E101–E111

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  15. Guideline on the investigation of drug interactions. European Medicines Agency, 2012 June 21. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2012/07/WC500129606.pdf). Accessed 31 Jan 2014

  16. Gunness P, Mueller D, Shevchenko V, Heinzle E, Ingelman-Sundberg M, Noor F (2013) 3D organotypic cultures of human HepaRG cells: a tool for in vitro toxicity studies. Toxicol Sci 133(1):67–78

    CAS  PubMed  Article  Google Scholar 

  17. Guo L, Dial S, Shi L et al (2011) Similarities and differences in the expression of drug-metabolizing enzymes between human hepatic cell lines and primary human hepatocytes. Drug Metab Dispos 39(3):528–538

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  18. Haouzi D, Baghdiguian S, Granier G, Travo P, Mangeat P, Hibner U (2005) Three-dimensional polarization sensitizes hepatocytes to Fas/CD95 apoptotic signalling. J Cell Sci 118(Pt 12):2763–2773

    CAS  PubMed  Article  Google Scholar 

  19. Hirschhaeuser F, Menne H, Dittfeld C, West J, Mueller-Klieser W, Kunz-Schughart LA (2010) Multicellular tumor spheroids: an underestimated tool is catching up again. J Biotechnol 148(1):3–15

    CAS  PubMed  Article  Google Scholar 

  20. Hoffmaster KA, Turncliff RZ, LeCluyse EL, Kim RB, Meier PJ, Brouwer KL (2004) P-glycoprotein expression, localization, and function in sandwich-cultured primary rat and human hepatocytes: relevance to the hepatobiliary disposition of a model opioid peptide. Pharm Res 21(7):1294–1302

    CAS  PubMed  Article  Google Scholar 

  21. Jedlitschky G, Hoffmann U, Kroemer HK (2006) Structure and function of the MRP2 (ABCC2) protein and its role in drug disposition. Expert Opin Drug Metab Toxicol 2(3):351–366

    CAS  PubMed  Article  Google Scholar 

  22. Kanno Y, Inouye Y (2010) A consecutive three alanine residue insertion mutant of human CAR: a novel CAR ligand screening system in HepG2 cells. J Toxicol Sci 35(4):515–525

    CAS  PubMed  Article  Google Scholar 

  23. Kelm JM, Timmins NE, Brown CJ, Fussenegger M, Nielsen LK (2003) Method for generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types. Biotechnol Bioeng 83(2):173–180

    CAS  PubMed  Article  Google Scholar 

  24. Khetani SR, Kanchagar C, Ukairo O et al (2013) Use of micropatterned cocultures to detect compounds that cause drug-induced liver injury in humans. Toxicol Sci 132(1):107–117

    CAS  PubMed  Article  Google Scholar 

  25. Kiang TK, Ho PC, Anari MR, Tong V, Abbott FS, Chang TK (2006) Contribution of CYP2C9, CYP2A6, and CYP2B6 to valproic acid metabolism in hepatic microsomes from individuals with the CYP2C9*1/*1 genotype. Toxicol Sci 94(2):261–271

    CAS  PubMed  Article  Google Scholar 

  26. Kobayashi Y, Ohshiro N, Sakai R, Ohbayashi M, Kohyama N, Yamamoto T (2005) Transport mechanism and substrate specificity of human organic anion transporter 2 (hOat2 [SLC22A7]). J Pharm Pharmacol 57(5):573–578

    CAS  PubMed  Article  Google Scholar 

  27. Kublbeck J, Jyrkkarinne J, Molnar F et al (2011) New in vitro tools to study human constitutive androstane receptor (CAR) biology: discovery and comparison of human CAR inverse agonists. Mol Pharm 8(6):2424–2433

    CAS  PubMed  Article  Google Scholar 

  28. LeCluyse EL (2001) Human hepatocyte culture systems for the in vitro evaluation of cytochrome P450 expression and regulation. Eur J Pharm Sci 13(4):343–368

    CAS  PubMed  Article  Google Scholar 

  29. LeCluyse EL, Audus KL, Hochman JH (1994) Formation of extensive canalicular networks by rat hepatocytes cultured in collagen-sandwich configuration. Am J Physiol 266(6 Pt 1):C1764–C1774

    CAS  PubMed  Google Scholar 

  30. LeCluyse EL, Witek RP, Andersen ME, Powers MJ (2012) Organotypic liver culture models: meeting current challenges in toxicity testing. Crit Rev Toxicol 42(6):501–548

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  31. MacDonald JS, Robertson RT (2009) Toxicity testing in the 21st century: a view from the pharmaceutical industry. Toxicol Sci 110(1):40–46

    CAS  PubMed  Article  Google Scholar 

  32. Madan A, Graham RA, Carroll KM et al (2003) Effects of prototypical microsomal enzyme inducers on cytochrome P450 expression in cultured human hepatocytes. Drug Metab Dispos 31(4):421–431

    CAS  PubMed  Article  Google Scholar 

  33. Malinen MM, Palokangas H, Yliperttula M, Urtti A (2012) Peptide nanofiber hydrogel induces formation of bile canaliculi structures in three-dimensional hepatic cell culture. Tissue Eng Part A 18:2418–2425

    Google Scholar 

  34. Matsui H, Takeuchi S, Osada T, Fujii T, Sakai Y (2012) Enhanced bile canaliculi formation enabling direct recovery of biliary metabolites of hepatocytes in 3D collagen gel microcavities. Lab Chip 12(10):1857–1864

    CAS  PubMed  Article  Google Scholar 

  35. Mueller D, Kramer L, Hoffmann E, Klein S, Noor F (2014) 3D organotypic HepaRG cultures as in vitro model for acute and repeated dose toxicity studies. Toxicol In Vitro 28(1):104–112

    CAS  PubMed  Article  Google Scholar 

  36. Nakamura K, Mizutani R, Sanbe A et al (2011) Evaluation of drug toxicity with hepatocytes cultured in a micro-space cell culture system. J Biosci Bioeng 111(1):78–84

    CAS  PubMed  Article  Google Scholar 

  37. Naspinski C, Gu X, Zhou G-D, Mertens-Talcott SU, Donnelly KC, Tian Y (2008) Pregnane X receptor protects HepG2 cells from BaP-induced DNA damage. Toxicol Sci 104(1):67–73

    CAS  PubMed  Article  Google Scholar 

  38. Ng S, Han R, Chang S et al (2006) Improved hepatocyte excretory function by immediate presentation of polarity cues. Tissue Eng 12(8):2181–2191

    CAS  PubMed  Article  Google Scholar 

  39. Silva MF, Aires CC, Luis PB et al (2008) Valproic acid metabolism and its effects on mitochondrial fatty acid oxidation: a review. J Inherit Metab Dis 31(2):205–216

    CAS  PubMed  Article  Google Scholar 

  40. Sweet DH (2005) Organic anion transporter (Slc22a) family members as mediators of toxicity. Toxicol Appl Pharmacol 204(3):198–215

    CAS  PubMed  Article  Google Scholar 

  41. Tang W, Abbott FS (1996) Bioactivation of a toxic metabolite of valproic acid, (E)-2-propyl-2,4-pentadienoic acid, via glucuronidation. LC/MS/MS characterization of the GSH-glucuronide diconjugates. Chem Res Toxicol 9(2):517–526

    CAS  PubMed  Article  Google Scholar 

  42. Tostoes RM, Leite SB, Serra M et al (2012) Human liver cell spheroids in extended perfusion bioreactor culture for repeated-dose drug testing. Hepatology 55(4):1227–1236

    CAS  PubMed  Article  Google Scholar 

  43. van de Steeg E, van Esch A, Wagenaar E, Kenworthy KE, Schinkel AH (2013) Influence of human OATP1B1, OATP1B3, and OATP1A2 on the pharmacokinetics of methotrexate and paclitaxel in humanized transgenic mice. Clin Cancer Res 19:821–832

    Google Scholar 

  44. Vavricka SR, Van Montfoort J, Ha HR, Meier PJ, Fattinger K (2002) Interactions of rifamycin SV and rifampicin with organic anion uptake systems of human liver. Hepatology 36(1):164–172

    CAS  PubMed  Article  Google Scholar 

  45. Vincent J, Teng R, Dalvie DK, Friedman HL (1998) Pharmacokinetics and metabolism of single oral doses of trovafloxacin. Am J Surg 176(Suppl 6A):8S–13S

    CAS  PubMed  Article  Google Scholar 

  46. Wang L, Boyer JL (2004) The maintenance and generation of membrane polarity in hepatocytes. Hepatology 39(4):892–899

    PubMed  Article  Google Scholar 

  47. Wienkers LC, Heath TG (2005) Predicting in vivo drug interactions from in vitro drug discovery data. Nat Rev Drug Discov 4(10):825–833

    CAS  PubMed  Google Scholar 

  48. Wilkening S, Stahl F, Bader A (2003) Comparison of primary human hepatocytes and hepatoma cell line Hepg2 with regard to their biotransformation properties. Drug Metab Dispos 31(8):1035–1042

    CAS  PubMed  Article  Google Scholar 

  49. Xu JJ, Henstock PV, Dunn MC, Smith AR, Chabot JR, de Graaf D (2008) Cellular imaging predictions of clinical drug-induced liver injury. Toxicol Sci 105(1):97–105

    CAS  PubMed  Article  Google Scholar 

  50. Zhang F, Xu R, Zhao M-j (2010) QSG-7701 human hepatocytes form polarized acini in three-dimensional culture. J Cell Biochem 110(5):1175–1186

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgments

We thank the staff at pathology department of the Bronovo hospital for their technical assistance in performing histological analysis. This research was funded by the Netherlands Toxicogenomics Center (NTC) through support of the Netherlands Genomics Initiative.

Conflict of interest

None.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Bob van de Water or Leo S. Price.

Electronic supplementary material

Below is the link to the electronic supplementary material.

204_2014_1215_MOESM1_ESM.pdf

Schematic representation of 3D HepG2 spheroid culture. (A) Matrigel was added to the plates using the Cybi-Selma semiautomatic pipettor. A 96-well mother plate was prepared by manually pipetting Matrigel into the wells. Plates were then incubated for 30–45 min at 37°C for gelation before adding the required number of cells. (B) Number and area of spheroids after 28 days in 3D cell cultures (PDF 2137 kb)

204_2014_1215_MOESM2_ESM.tif

Urea production in 2D and 3D HepG2 cells. Data normalized to 6X104 cells. Data are representative of 2 independent experiments (TIFF 3598 kb)

Primer sequences used for real-time PCR analysis (PDF 77 kb)

Protocol used to analyze phase I metabolites at Pharmacelsus GmBH (DOCX 14 kb)

204_2014_1215_MOESM5_ESM.tif

Biotransformation of testosterone in 2D and 3D HepG2 cultures. Extracted ion chromatogram of androstenedione (m/z 287,20) in a 72-h 3D sample (A). Time curves of androstenedione formation after exposure of 2D/3D cell cultures, (B). Data are representative of two independent experiments. Extracted ion chromatogram of hydroxylated testosterone (m/z 305, 19) in a 72hr 3D sample, (C) Time curves of 1-β and 6β-hydroxy-testosterone formation and (D and E) after exposure. Quantification is based on UV and corrected for background. Data are representative of two independent experiments (TIFF 6531 kb)

Protocol used to analyze testosterone metabolism and phase II metabolism (Glucuronidation and sulfation) (DOC 28 kb)

List of compounds used for toxicity assessment (PDF 16 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ramaiahgari, S.C., den Braver, M.W., Herpers, B. et al. A 3D in vitro model of differentiated HepG2 cell spheroids with improved liver-like properties for repeated dose high-throughput toxicity studies. Arch Toxicol 88, 1083–1095 (2014). https://doi.org/10.1007/s00204-014-1215-9

Download citation

Keywords

  • Alternative models
  • Bile canaliculi
  • CYP450 enzymes
  • Drug-induced liver injury
  • Drug metabolism