Skip to main content

Advertisement

Log in

Biological markers of exposure to organophosphorus nerve agents

  • Review Article
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Organophosphorus nerve agents are the most toxic chemical warfare agents that are known to have been produced, stockpiled and weaponised. Their development, production, stockpiling and use are prohibited under the terms of the Chemical Weapons Convention and, together with their precursors, are subject to strict controls and verification procedures. The detection and identification of biological markers of exposure to nerve agents are required for three main purposes: confirmation of exposure for forensic purposes in cases of alleged use; diagnosis to guide appropriate medical countermeasures in the event of an exposure; and occupational health monitoring of workers in defence laboratories and demilitarisation facilities. Biomarkers of nerve agents fall into two main groups, free metabolites and adducts to proteins. These are reviewed together with analytical methods for their identification. Examples are provided of applications in cases of human exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adams TK, Capacio BR, Smith JR, Whalley CE, Korte WD (2004) The application of the fluoride reactivation process to the detection of sarin and soman nerve agent exposures in biological samples. Drug Chem Toxicol 27:77–91

    Article  PubMed  CAS  Google Scholar 

  • Bao Y, Liu Q, Chen J, Lin Y, Wu B, Xie J (2012) Quantification of nerve agent adducts with albumin in rat plasma using liquid chromatography-isotope dilution tandem mass spectrometry. J Chromatogr A 1229:164–171

    Article  PubMed  CAS  Google Scholar 

  • Barr JR, Driskell WJ, Aston LS, Martinez RA (2004) Quantitation of metabolites of the nerve agents sarin, soman, cyclosarin, VX, and Russian VX in human urine using isotope-dilution gas chromatography-tandem mass spectrometry. J Anal Toxicol 28:372–378

    PubMed  CAS  Google Scholar 

  • Benschop HP, de Jong LPA (1991) Toxicokinetics of soman: species variation and stereospecificity in elimination pathways. Neurosci Biobehav Rev 15:73–77

    Article  PubMed  CAS  Google Scholar 

  • Berry WK, Davies DR (1966) Factors influencing the rate of aging of a series of alkyl methylphosphonyl-acetylcholinesterase. Biochem J 100:572–576

    PubMed  CAS  Google Scholar 

  • Black RM (2008) An overview of biological markers of exposure to chemical warfare agents. J Anal Toxicol 32:1–8

    Google Scholar 

  • Black RM (2010) History and perspectives of bioanalytical methods for chemical warfare agent detection. J Chromatogr B 878:1207–1215

    Article  CAS  Google Scholar 

  • Black RM, Harrison JM (1996) The chemistry of organophosphorus chemical warfare agents. In: Hartley FR (ed) The Chemistry of Organophosphorus Compounds, vol 4. Wiley, Chichester, pp 781–840

    Chapter  Google Scholar 

  • Black RM, Muir R (2003) Derivatisation reactions in the chromatographic analysis of chemical warfare agents and their degradation products. J Chromatogr A 1000:253–281

    Article  PubMed  CAS  Google Scholar 

  • Black RM, Noort D (2005) Methods for the retrospective detection of exposure to toxic scheduled chemicals. Part A: analysis of free metabolites. In: Mesilaakso M (ed) Chemical weapons convention chemicals analysis (Sample collection, preparation and analytical methods). Wiley, Chichester, pp 403–431

    Google Scholar 

  • Black RM, Noort D (2007) Biological markers of exposure to chemical warfare agents. In: Marrs TC, Maynard RL, Sidell FR (eds) Chemical warfare agents: toxicology and treatment, 2nd edn. Wiley, Chichester, pp 127–156

    Chapter  Google Scholar 

  • Black RM, Read RW (2007) Environmental and biomedical sample analysis in support of allegations of use of chemical warfare agents. Toxin Rev 26:275–298

    Article  CAS  Google Scholar 

  • Black RM, Clarke RJ, Read RW, Reid MTJ (1994) Applications of gas chromatography-mass spectrometry and gas chromatography-tandem mass spectrometry to the analysis of chemical warfare samples, found to contain residues of the nerve agent sarin, sulphur mustard and their degradation products. J Chromatogr A 662:301–321

    Article  PubMed  CAS  Google Scholar 

  • Black RM, Harrison JM, Read RW (1999) The interaction of sarin and soman with plasma proteins: the identification of a novel phosphonylation site. Arch Toxicol 73:123–126

    Article  PubMed  CAS  Google Scholar 

  • Capacio BR, Smith JR, Gordon RK, Haigh JR, Barr JR, Lukey BJ (2008) Clinical detection of exposure to chemical warfare agents. In: Romano JA Jr, Lukey BJ, Salem H (eds) Chemical warfare agents. Chemistry, pharmacology, toxicology, and therapeutics. CRC Press, Boca Raton, pp 501–548

    Google Scholar 

  • Carol-Visser J, van der Schans M, Fidder A, Hulst AG, van Baar BLM, Irth H, Noort D (2008) Development of an automated on-line pepsin digestion-liquid chromatography-mass spectrometry configuration for the rapid analysis of protein adducts of chemical warfare agents. J Chromatogr B 870:91–97

    Article  CAS  Google Scholar 

  • Ciner FL, McCord CE, Plunkett RW Jr, Martin MF, Croley TR (2007) Isotope dilution LC/MS/MS for the detection of nerve agent exposure in urine. J Chromatogr B 846:42–50

    Article  CAS  Google Scholar 

  • Degenhardt CEAM, Pleijsier K, van der Schans MJ, Langenberg JP, Preston KE, Solano MI, Maggio VL, Barr JR (2004) Improvements of the fluoride reactivation method for the verification of nerve agent exposure. J Anal Toxicol 28:364–371

    PubMed  CAS  Google Scholar 

  • Ding S-J, Carr J, Carlson JE, Tong L, Xue W, Li Y, Schopfer LM, Li B, Nachon F, Asojo O, Thompson CM, Hinrichs SH, Masson P, Lockridge O (2008) Five tyrosines and two serines in human albumin are labeled by the organophosphorus agent FP-biotin. Chem Res Toxicol 21:1787–1794

    Article  PubMed  CAS  Google Scholar 

  • Driskell WJ, Shih M, Needham LL, Barr DB (2002) Quantitation of organophosphorus nerve agent metabolites in human urine using isotope dilution gas chromatography-tandem mass spectrometry. J Anal Toxicol 26:6–10

    PubMed  CAS  Google Scholar 

  • Du D, Wang J, Smith JN, Timchalk C, Lin Y (2009) Biomonitoring of organophosphorus agent exposure by reactivation of cholinesterase enzyme based on carbon nanotube-enhanced flow-injection amperometric detection. Anal Chem 81:9314–9320

    Article  PubMed  CAS  Google Scholar 

  • Du D, Wang J, Wang L, Lu D, Smith JN, Timchalk C, Lin Y (2011) Magnetic electrochemical sensing platform for biomonitoring of exposure to organophosphorus pesticides and nerve agents based on simultaneous measurement of total enzyme amount and enzyme activity. Anal Chem 83:3770–3777

    Article  PubMed  CAS  Google Scholar 

  • Du D, Wang J, Wang L, Lu D, Lin Y (2012) Integrated lateral flow test strip with electrochemical sensor for quantification of phosphorylated cholinesterase: biomarker of exposure to organophosphorus agents. Anal Chem 84:1380–1835

    Article  PubMed  CAS  Google Scholar 

  • Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) A new rapid colorimetric determination of AChE activity. Biochem Pharmacol 7:88–95

    Article  PubMed  CAS  Google Scholar 

  • Fidder A, Hulst AG, Noort D, de Ruiter R, van der Schans MJ, Benschop HP, Langenberg JP (2002) Retrospective detection of exposure to organophosphorus anti-cholinesterases: mass spectrometric analysis of phosphylated human butyrylcholinesterase. Chem Res Toxicol 15:582–590

    Article  PubMed  CAS  Google Scholar 

  • Fredriksson S-Å, Hammarström L-G, Henriksson L, Lakso H-Å (1995) Trace determination of alkyl methylphosphonic acids in environmental and biological samples using gas chromatography/negative-ion chemical ionization mass spectrometry and tandem mass spectrometry. J Mass Spectrom 30:1133–1143

    Article  CAS  Google Scholar 

  • Grigoryan H, Li B, Anderson EK, Xue W, Nachon F, Lockridge O, Schopfer LM (2009a) Covalent binding of the organophosphorus agent FP-biotin to tyrosine in eight proteins that have no active site serine. Chem Biol Interact 180:492–498

    Article  PubMed  CAS  Google Scholar 

  • Grigoryan H, Li B, Xue W, Grigoryan M, Schopfer LM, Lockridge O (2009b) Mass spectral characterization of organophosphate-labelled lysine in peptides. Anal Biochem 394:92–100

    Article  PubMed  CAS  Google Scholar 

  • Haigh JR, Lefkowitz LJ, Capacio BR, Doctor BP, Gordon RK (2008) Advantages of the WRAIR whole blood cholinesterase assay: comparative analysis to the micro-Ellman, Test-mate ChE (TM) and Michel (Delta pH) assays. Chem Biol Interact 175:417–420

    Article  PubMed  CAS  Google Scholar 

  • Heilbronn E (1965) Action of fluoride on cholinesterase. II. In vitro reactivation of cholinesterases inhibited by organophosphorus compounds. Biochem Pharmacol 14:1363–1373

    Article  PubMed  CAS  Google Scholar 

  • Holland KE, Solano MI, Johnson RC, Maggio VL, Barr JR (2008) Modifications to the organophosphorus nerve agent-protein adduct refluoridation method for retrospective analysis of nerve agent exposures. J Anal Toxicol 32:116–124

    PubMed  CAS  Google Scholar 

  • Jakubowski EM, McGuire JM, Evans RA, Edwards JL, Hulet SW, Benton BJ, Forster JS, Burnett DC, Muse WT, Matson K, Crouse CL, Mioduszewski RJ, Thomson SA (2004) Quantitation of fluoride ion released sarin in red blood cell samples by gas chromatography-chemical ionization mass spectrometry using isotope dilution and large-volume injection. J Anal Toxicol 28:357–363

    PubMed  CAS  Google Scholar 

  • John H, Worek F, Thiermann H (2008) LC-MS-based procedures for monitoring of toxic organophosphorus compounds and verification of pesticide and nerve agent poisoning. Anal Bioanal Chem 391:97–116

    Article  PubMed  CAS  Google Scholar 

  • John H, Breyer F, Thumfart JO, Hochstetter H, Thiermann H (2010) Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for detection and identification of albumin phosphylation by organophosphorus pesticides and G- and V-type nerve agents. Anal Bioanal Chem 398:2677–2691

    Article  PubMed  CAS  Google Scholar 

  • Jokanović M (2009) Current understanding of the mechanisms involved in metabolic detoxification of warfare nerve agents. Toxicol Lett 188:1–10

    Article  PubMed  Google Scholar 

  • Langenberg JP, van der Schans MJ, Noort D (2009) Assessment of nerve agent exposure: existing and emerging methods. Bioanalysis 1:729–739

    Article  PubMed  CAS  Google Scholar 

  • Li B, Schopfer LM, Hinrichs SH, Masson P, Lockridge O (2007) Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry assay for organophosphorus toxicants bound to human albumin at Tyr411. Anal Biochem 361:263–272

    Article  PubMed  CAS  Google Scholar 

  • Li B, Nachon M, Froment MT, Verdier L, Debouzy JC, Brasme B, Gillon E, Schopfer LM, Lockridge O, Masson P (2008) Binding and hydrolysis of soman by human serum albumin. Chem Res Toxicol 21:421–431

    Article  PubMed  CAS  Google Scholar 

  • Lin Y, Wang J, Liu G, Timchalk C (2009) Portable analytical systems for on-site diagnosis of exposure to pesticides and nerve agents. In: Nagarajan R, Zukas W, Hatton TA, Lee S (eds) Nanoscience and nanotechnology for chemical and biological defense, ACS Symposium Series 1016. American Chemical Society, Washington, pp 85–98

    Chapter  Google Scholar 

  • Liu G, Wang J, Barry WC (2008) Nanoparticle-based electrochemical immunosensor for the detection of phosphorylated acetylcholinesterase: an exposure biomarker of organophosphate pesticides and nerve agents. Chemistry 14:9951–9959

    Article  PubMed  CAS  Google Scholar 

  • Matsuda Y, Nagao M, Takatori T, Niijima H, Nakajima M, Iwase H, Kobayashi M, Iwadate K (1998) Detection of sarin hydrolysis product in formalin-fixed brain tissues of victims of the Tokyo subway terrorist attack. Toxicol Appl Pharmacol 150:310–320

    Article  PubMed  CAS  Google Scholar 

  • Mawhinney DB, Hamelin EI, Fraser R, Silva SS, Pavlopoulos AJ, Kobelski RJ (2007) The determination of organophosphate nerve agent metabolites in human urine by hydrophilic interaction liquid chromatography tandem mass spectrometry. J Chromatogr B 852:235–243

    Article  CAS  Google Scholar 

  • McGuire JM, Taylor IT, Byers CE, Jakubowski EM, Thomson SA (2008) Determination of VX-G analogue in red blood cells via gas chromatography-tandem mass spectrometry following an accidental exposure to VX. J Anal Toxicol 32:73–77

    PubMed  CAS  Google Scholar 

  • McGuire JM, Parrish ME, Jakubowski EM (2011) Elucidation of a novel VX metabolite via UPLC®/MS–MS. Poster presented at 59th ASMS Conference on Mass Spectrometry and Allied Topics, Denver, 5–9 June 2011

  • Minami M, Hui D-M, Katsumata M, Inagaki H, Boulet CA (1997) Method for the analysis of the methylphosphonic acid metabolites of sarin and its ethanol-substituted analogue in urine as applied to the victims of the Tokyo sarin disaster. J Chromatogr B 695:237–244

    Article  CAS  Google Scholar 

  • Nagao M, Takatori T, Matsuda Y, Nakajima M, Iwase H, Iwadate K (1997) Definitive evidence for the acute sarin poisoning diagnosis in the Tokyo subway. Toxicol Appl Pharmacol 144:198–203

    Article  PubMed  CAS  Google Scholar 

  • Nakajima T, Sasaki K, Ozawa H, Sekijima Y, Morita H, Fukushima Y, Yanagisawa N (1998) Urinary metabolites of sarin in a patient of the Matsumoto sarin incident. Arch Toxicol 72:601–603

    Article  PubMed  CAS  Google Scholar 

  • Noort D, Black RM (2005) Methods for the retrospective detection of exposure to toxic scheduled chemicals. Part B: mass spectrometric and immunochemical analysis of covalent adducts to proteins and DNA. In: Mesilaakso M (ed) Chemical weapons convention chemicals analysis (Sample collection, preparation and analytical methods). Wiley, Chichester, pp 433–451

    Google Scholar 

  • Noort D, Hulst AG, Platenburg DHJM, Polhuijs M, Benschop HP (1998) Quantitative analysis of O-isopropyl methylphosphonic acid in serum samples of Japanese citizens allegedly exposed to sarin: estimation of internal dosage. Arch Toxicol 72:671–675

    Article  PubMed  CAS  Google Scholar 

  • Noort D, Fidder A, van der Schans MJ, Hulst AG (2006) Verification of exposure to organophosphates: generic mass spectrometric method for detection of human butyrylcholinesterase adducts. Anal Chem 78:6640–6644

    Article  PubMed  CAS  Google Scholar 

  • OPCW (1994) Convention on the prohibition of the development, production, stockpiling and use of chemical weapons and on their destruction. Organisation for the Prohibition of Chemical Weapons, The Hague

  • Peeples ES, Schopfer LM, Duysen EG, Spaulding R, Voelker T, Thompson CM, Lockridge O (2005) Albumin, a new biomarker of organophosphorus toxicant exposure, identified by mass spectrometry. Toxicol Sci 83:303–312

    Article  PubMed  CAS  Google Scholar 

  • Polhuijs M, Langenberg JP, Benschop HP (1997) New method for retrospective detection of exposure to organophosphorus anticholinesterases: application to alleged sarin victims of Japanese terrorists. Toxicol Appl Pharmacol 146:156–161

    Article  PubMed  CAS  Google Scholar 

  • Read RW (2011) Applications of mass spectrometry in investigations of alleged use of chemical warfare agents. In: Banoub J (ed) Detection of biological agents for the prevention of bioterrorism. NATO science for peace and security series A—chemistry and biology. Springer, Heidelberg, pp 201–219

    Chapter  Google Scholar 

  • Read RW, Black RM (1999) Rapid screening procedures for the hydrolysis products of chemical warfare agents using positive and negative ion liquid chromatography-mass spectrometry with atmospheric pressure chemical ionisation. J Chromatogr A 862:169–177

    Article  PubMed  CAS  Google Scholar 

  • Read RW, Riches JR, Stevens JA, Stubbs SJ, Black RM (2010) Biomarkers of organophosphorus nerve agent exposure: comparison of phosphylated butyrylcholinesterase and phosphylated albumin after oxime therapy. Arch Toxicol 84:25–36

    Article  PubMed  CAS  Google Scholar 

  • Reiter G, Mikler J, Hill I, Weatherby K, Thiermann H, Worek F (2011) Simultaneous quantification of VX and its toxic metabolite in blood and plasma samples and its application for in vivo and in vitro toxicological studies. J Chromatogr B 879:2704–2713

    Article  CAS  Google Scholar 

  • Riches J, Morton I, Read RW, Black RM (2005) The trace analysis of alkyl alkylphosphonic acids in urine using gas chromatography-ion trap negative ion tandem mass spectrometry. J Chromatogr B 816:251–258

    Article  CAS  Google Scholar 

  • Schopfer LM, Lockridge O (2012) Analytical approaches for monitoring exposure to organophosphorus and carbamate agents through analysis of protein adducts. Drug Test Anal 4:246–261

    Article  PubMed  CAS  Google Scholar 

  • Schopfer LM, Champion MM, Tamblyn N, Thompson CM, Lockridge O (2005) Characteristic mass spectral fragments of the organophosphorus agent FP-biotin and FP-biotinylated peptides from trypsin and bovine albumin (Tyr410). Anal Biochem 345:122–132

    Article  PubMed  CAS  Google Scholar 

  • Schopfer LM, Grigoryan H, Li B, Nachon F, Masson P, Lockridge O (2010) Mass spectral characterization of organophosphate-labeled, tyrosine-containing peptides: characteristic mass fragments and a new binding motif for organophosphates. J Chromatogr B 878:1297–1311

    Article  CAS  Google Scholar 

  • Shih ML, Smith JR, McMonagle JD, Dolzine TW, Gresham VC (1991) Detection of metabolites of toxic alkyl methylphosphonates in biological samples. Biol Mass Spectrom 20:717–723

    Article  PubMed  CAS  Google Scholar 

  • Shih ML, McMonagle JD, Dolzine TW, Gresham VC (1994) Metabolite pharmacokinetics of soman, sarin and GF in rats and biological monitoring of exposure to toxic organophosphorus agents. J Appl Toxicol 14:195–199

    Article  PubMed  CAS  Google Scholar 

  • Sidell FR (1997) Nerve agents. In: Sidell FR, Takafuji ET, Franz DR (eds) Medical aspects of chemical and biological warfare. Office of the Surgeon General, Department of the Army, USA, pp 129–179

  • Sidell FR, Groff WA (1974) The reactivatability of cholinesterase inhibited by VX and sarin in man. Toxicol Appl Pharmacol 33:1119–1125

    Google Scholar 

  • Solano MI, Thomas JD, Taylor JT, McGuire JM, Jakubowski EM, Thomson SA, Maggio VL, Holland KE, Smith JR, Capacio B, Woolfitt AR, Ashley DL, Barr JR (2008) Quantification of nerve agent VX-butyrylcholinesterase adduct biomarker from an accidental exposure. J Anal Toxicol 32:68–72

    PubMed  CAS  Google Scholar 

  • Sporty JL, Lemire SW, Jakubowski EM, Renner JA, Evans RA, Williams RF, Schmidt JG, van der Schans MJ, Noort D, Johnson RC (2010) Immunomagnetic separation and quantification of butyrylcholinesterase nerve agent adducts in human serum. Anal Chem 82:6593–6600

    Article  PubMed  CAS  Google Scholar 

  • Subramaniam R, Åstot C, Juhlin L, Nilsson C, Östin A (2010) Direct derivatization and rapid GC-MS screening of nerve agent markers in aqueous samples. Anal Chem 82:7452–7459

    Article  PubMed  CAS  Google Scholar 

  • Sun J, Lynn BC (2007) Development of a MALDI-TOF-MS method to identify and quantify butyrylcholinesterase inhibition resulting from exposure to organophosphate and carbamate pesticides. J Am Soc Mass Spectrom 18:698–706

    Article  PubMed  Google Scholar 

  • Swaim LL, Johnson RC, Zhou Y, Sandlin C, Barr JR (2008) Quantification of organophosphorus nerve agent metabolites using a reduced volume, high throughput sample processing format and liquid chromatography-mass spectrometry. J Anal Toxicol 32:774–777

    PubMed  CAS  Google Scholar 

  • Tan HY, Loke WK, Tan YT, Nguyen NT (2008) A lab-on-a-chip for detection of nerve agent sarin in blood. Lab Chip 8:885–891

    Article  PubMed  CAS  Google Scholar 

  • Tsuchihashi H, Katagi M, Nishikawa M, Tatsuno M (1998) Identification of metabolites of nerve agent VX in serum collected from a victim. J Anal Toxicol 22:383–388

    PubMed  CAS  Google Scholar 

  • Tsuchihashi H, Katagi M, Tatsuno M, Nishikawa M, Miki A (2000) Determination of metabolites of nerve agent O-ethyl-S-2-diisopropylaminoethyl methylphosphonothioate (VX). In: Natural and selected synthetic toxins, ACS symposium series 745, Amer. Chem. Soc. Washington, pp 369–386

  • Tsuge K, Seto Y (2006) Detection of human butyrylcholinesterase-nerve gas adducts by liquid chromatography-mass spectrometric analysis after in gel chymotryptic digestion. J Chromatogr B 838:21–30

    Article  CAS  Google Scholar 

  • Tsuge K, Seto Y (2009) Mass spectrometric identification of chemical warfare agent adducts with biological macromolecules for verification of their exposure. J Health Sci 55:879–886

    Article  CAS  Google Scholar 

  • Tu AT (2002) Chemical terrorism. Horrors in Tokyo Subway and Matsumoto City. Alaken Inc., Fort Collins

  • United Nations (1984) Report of the specialists appointed by the Secretary-General to investigate allegations by the Islamic Republic of Iran concerning the use of chemical weapons. Report number S/16433

  • van der Meer JA, Trap HC, Noort D, van der Schans MJ (2010) Comprehensive gas chromatography with time of flight MS and large volume introduction for the detection of fluoride-induced regenerated nerve agent in biological samples. J Chromatogr B 878:1320–1325

    Article  Google Scholar 

  • van der Schans MJ, Lander BJ, van der Wiel H, Langenberg JP, Benschop HP (2003) Toxicokinetics of the nerve agent (±)-VX in anesthetized and atropinized hairless guinea pigs and marmosets after intravenous and percutaneous administration. Toxicol Appl Pharmacol 191:48–62

    Article  PubMed  Google Scholar 

  • van der Schans MJ, Polhuijs M, van Dijk C, Degenhardt CEAM, Pleijsier K, Langenberg JP, Benschop HP (2004) Retrospective detection of exposure to nerve agents: analysis of phosphofluoridates originating from fluoride-induced reactivation of phosphylated BuChE. Arch Toxicol 78:508–524

    Article  PubMed  Google Scholar 

  • van der Schans MJ, Benschop HP, Whalley CE (2008a) Toxicokinetics of nerve agents. In: Romano JA, Lukey BJ, Salem H (eds) Chemical warfare agents, chemistry, pharmacology, toxicology and therapeutics. CRC Press, Boca Raton, pp 97–122

    Google Scholar 

  • van der Schans MJ, Fidder A, van Oeveren D, Hulst AG, Noort D (2008b) Verification of exposure to cholinesterase inhibitors: generic detection of OPCW Schedule 1 nerve agent adducts to human butyrylcholinesterase. J Anal Toxicol 32:125–130

    PubMed  Google Scholar 

  • Verstappen DRW, Hulst AG, Fidder A, Vermeulen NPE, Noort D (2012) Interactions of organophosphates with keratins in the cornified epithelium of human skin. Chem Biol Interact 197:93–102

    Article  PubMed  CAS  Google Scholar 

  • Vilanova E, Sogorb MA (1999) The role of phosphotriesterases in the detoxification of organophosphorus compounds. Crit Rev Toxicol 29:21–57

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Xie J, Gu M, Feng J, Ruan J (2005) Gas chromatographic-mass spectrometric method for quantitation of trimethylsilyl derivative of nerve agent degradation products in human plasma, using strong anion-exchange solid-phase extraction. Chromatographia 62:167–173

    Article  CAS  Google Scholar 

  • Wang H, Wang J, Timchalk C, Lin Y (2008) Magnetic electrochemical immunoassays with quantum dot labels for detection of phosphorylated acetylcholinesterase in plasma. Anal Chem 80:8477–8484

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Du D, Lu D, Lin CT, Smith JN, Timchalk C, Liu F, Wang J, Lin Y (2011) Enzyme-linked immunosorbent assay for detection of organophosphorylated butyrylcholinesterase: a biomarker of exposure to organophosphate agents. Anal Chim Acta 693:1–6

    Article  PubMed  CAS  Google Scholar 

  • Williams NH, Harrison JM, Read RW, Black RM (2007) Phosphylated tyrosine in albumin as a biomarker of exposure to organophosphorus nerve agents. Arch Toxicol 81:627–639

    Article  PubMed  CAS  Google Scholar 

  • Worek F, Mast U, Kiderlen D, Diepold C, Eyer P (1999) Improved determination of acetylcholinesterase activity in human blood. Clin Chim Acta 288:73–90

    Article  PubMed  CAS  Google Scholar 

  • Worek F, Koller M, Thiermann H, Szinicz L (2005) Diagnostic aspects of organophosphate poisoning. Toxicol 214:182–189

    CAS  Google Scholar 

  • Yu H, Pei C, Hu Z, Zhou S, Zhao C, Wang Y (2010) Determination of nerve agent metabolites in urine by high performance liquid chromatography/quadrupole-time of flight tandem mass spectrometry. Fenxi Ceshi Xuebo 29:1078–1082

    CAS  Google Scholar 

  • Zydel F, Smith JR, Pagnotti VS, Lawrence RJ, McEwen CN (2012) Capacio BR (2012) Rapid screening of chemical warfare agent metabolites by atmospheric solids analysis probe-mass spectroscopy (ASAP-MS). Drug Testing Anal 4:308–311

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin M. Black.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Black, R.M., Read, R.W. Biological markers of exposure to organophosphorus nerve agents. Arch Toxicol 87, 421–437 (2013). https://doi.org/10.1007/s00204-012-1005-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-012-1005-1

Keywords

Navigation