Skip to main content
Log in

Pharmacokinetics explain in vivo/in vitro discrepancies of carcinogen-induced gene expression alterations in rat liver and cultivated hepatocytes

  • In vitro systems
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Cultivated hepatocytes represent a well-established in vitro system. However, the applicability of hepatocytes in toxicogenomics is still controversially discussed. Recently, an in vivo/in vitro discrepancy has been described, whereby the non-genotoxic rat liver carcinogen methapyrilene alters the expression of the metabolizing genes SULT1A1 and ABAT, as well as the DNA damage response gene GADD34 in vitro, but not in vivo. If the collagen sandwich cultures of hepatocytes really produce false-positive data, this would compromise its application in toxicogenomics. To revisit the putative in vivo/in vitro discrepancy, we first analyzed and modeled methapyrilene concentrations in the portal vein of rats. The relatively short half-life of 2.8 h implies a rapid decrease in orally administered methapyrilene in vivo below concentrations that can cause gene expression alterations. This corresponded to the time-dependent alteration levels of GADD34, ABAT and SULT1A1 RNA in the liver: RNA levels are altered 1, 6 and 12 h after methapyrilene administration, but return to control levels after 24 and 72 h. In contrast, methapyrilene concentrations in the culture medium supernatant of primary rat hepatocyte cultures decreased slowly. This explains why GADD34, ABAT and SULT1A1 were still deregulated after 24 h exposure in vitro, but not in vivo. It should also be considered that the earliest analyzed time point in the previous in vivo studies was 24 h after methapyrilene administration. In conclusion, previously observed in vitro/in vivo discrepancy can be explained by different pharmacokinetics present in vitro and in vivo. When the in vivo half-life is short, levels of some initially altered genes may have returned to control levels already 24 h after administration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

SULT1A1:

Sulfotransferase

ABAT:

4-aminobutyrate aminotransferase

GADD34:

Growth arrest and DNA damage inducible gene 34

ABCB1:

Multi drug resistance protein 1NQO1: NADPH-quinone oxidoreductase

References

  • Bauer A, Schumann A, Gilbert M, Wilhelm C, Hengstler JG, Schiller J, Fuchs B (2009) Evaluation of carbon tetrachloride-induced stress on rat hepatocytes by 31P NMR and MALDI-TOF mass spectrometry: lysophosphatidylcholine generation from unsaturated phosphatidylcholines. Chem Phys Lipids 159(1):21–29

    Article  PubMed  CAS  Google Scholar 

  • Beekmann JM, Boess F, Hildebrand H, Kalkuhl A, Suter L (2006) Gene Expression analysis of the hepatotoxicant methapyrilene in primary rat hepatocytes: an interlaboratory study. Environ Health Perspect 114(1):92–99

    Google Scholar 

  • Boess F, Kamber M, Romer S, Gasser R, Muller D, Albertini S, Suter L (2003) Gene expression in two hepatic cell lines, cultured primary hepatocytes, and liver slices compared to the in vivo liver gene expression in rats: possible implications for toxicogenomics use of in vitro systems. Toxicol Sci 73(2):386–402

    Article  PubMed  CAS  Google Scholar 

  • Brown RP, Delp MD, Lindstedt SL, Rhomberg LR, Beliles RP (1997) Physiological parameter values for physiologically based pharmacokinetic models. Toxicol Ind Health 13:407–484

    PubMed  CAS  Google Scholar 

  • Calandre EP, Alferez N, Hassanein K, Azarnoff DL (1981) Methapyrilene kinetics and dynamics. Clin Pharmacol Ther 29:527–532

    Article  PubMed  CAS  Google Scholar 

  • Doktorova TY, Ellinger-Ziegelbauer H, Vinken M, Vanhaecke T, Delft J, Kleinjans J, Ahr HJ, Rogiers V (2012) Comparison of hepatocarcinogen-induced gene expression profiles in conventional primary rat hepatocytes with in vivo rat liver. Arch Toxicol 86(9):1399–1411

    Article  PubMed  CAS  Google Scholar 

  • Ellinger-Ziegelbauer H, Stuart B, Wahle B, Bomann W, Ahr HJ (2005) Comparison of the expression profiles induced by genotoxic and nongenotoxic carcinogens in rat liver. Mutat Res 575(1–2):61–84

    PubMed  CAS  Google Scholar 

  • Ellinger-Ziegelbauer H, Gmuender H, Bandenburg A, Ahr HJ (2008) Prediction of a carcinogenic potential of rat hepatocarcinogens using toxicogenomics analysis of short-term in vivo studies. Mutat Res 637:23–39

    Article  PubMed  CAS  Google Scholar 

  • Fielden MR, Brennan R, Gollub J (2007) A gene expression biomarker provides early prediction and mechanistic assessment of hepatic tumor induction by nongenotoxic chemicals. Toxicol Sci 99:90–100

    Article  PubMed  CAS  Google Scholar 

  • Godoy P, Hengstler JG, Ilkavets I, Meyer C, Bachmann A, Müller A, Tuschl G, Mueller SO, Dooley S (2009) Extracellular matrix modulates sensitivity of hepatocytes to fibroblastoid dedifferentiation and transforming growth factor beta-induced apoptosis. Hepatology 49(6):2031–2043

    Article  PubMed  CAS  Google Scholar 

  • Godoy P, Schug M, Bauer A, Hengstler JG (2010a) Reversible manipulation of apoptosis sensitivity in cultured hepatocytes by matrix-mediated manipulation of signaling activities. Methods Mol Biol 640:139–155

    Article  PubMed  CAS  Google Scholar 

  • Godoy P, Lakkapamu S, Schug M, Bauer A, Stewart JD, Bedawi E, Hammad S, Amin J, Marchan R, Schormann W, Maccoux L, von Recklinghausen I, Reif R, Hengstler JG (2010b) Dexamethasone-dependent versus -independent markers of epithelial to mesenchymal transition in primary hepatocytes. Biol Chem 391(1):73–83

    Article  PubMed  CAS  Google Scholar 

  • Heise T, Schug M, Storm D, Ellinger-Ziegelbauer H, Ahr HJ, Hellwig B, Rahnenfuhrer J, Ghallab A, Guenther G, Sisnaiske J, Reif R, Godoy P, Mielke H, Gundert-Remy U, Lampen A, Oberemm A, Hengstler JG (2012) In vitro–in vivo correlation of gene expression alterations induced by liver carcinogens. Curr Med Chem 19(11):1721–1730

    Article  PubMed  CAS  Google Scholar 

  • Hengstler JG, Utesch D, Steinberg P, Platt KL, Diener B, Ringel M, Swales N, Fischer T, Biefang K, Gerl M, Böttger T, Oesch F (2000) Cryopreserved primary hepatocytes as a constantly available in vitro model for the evaluation of human and animal drug metabolism and enzyme induction. Drug Metab Rev 32:81–118

    Article  PubMed  CAS  Google Scholar 

  • Hewitt NJ, Lechón MJG, Houston JB, Hallifax D, Brown HS, Maurel P, Kenna JG, Gustavsson L, Lohmann C, Skonberg C, Guillouzo A, Tuschl G, Li AP, LeCluyse E, Groothuis GMM, Hengstler JG (2007) Primary hepatocytes: current understanding of the regulation of metabolic enzymes and transporter proteins, and pharmaceutical practice for the use of hepatocytes in metabolism, enzyme induction, transporter, clearance, and hepatotoxicity studies. Drug Metab Rev 39:159–234

    Article  PubMed  CAS  Google Scholar 

  • Hrach J, Mueller SO, Hewitt P (2011) Development of an in vitro liver toxicity prediction model based on longer term primary rat hepatocyte culture. Toxicol Lett 206(2):189–196

    Article  PubMed  CAS  Google Scholar 

  • Kelly DW, Holder CL, Korfmacher WA, Slikker W (1990) Plasma elimination and urinary excretion of methapyrilene in the rat. Drug Metab Dispos 18:1018–1024

    PubMed  CAS  Google Scholar 

  • Kienhuis AS, van de Poll MCG, Wortelboer H, van Herwijnen M, Gottschalk R, Dejong CHC, Boorsma A, Paules RS, Kleinjans JCS, Stierum RH, van Delft JHM (2009) Parallelogram approach using rat-human in vitro and rat in vivo toxicogenomics predicts acetaminophen-induced hepatotoxicity in humans. Toxicol Sci 107(2):544–552

    Article  PubMed  CAS  Google Scholar 

  • Knobeloch D, Ehnert S, Schyschka L, Büchler P, Schoenberg M, Kleef J, Thasler WE, Nussler NC, Godoy P, Hengstler J, Nussler AK (2012) Human hepatocytes: isolation, culture and quality procedures. Methods Mol Biol 806:99–120

    Article  PubMed  CAS  Google Scholar 

  • Mathijs K, Brauers KJJ, Jennen DGJ, Boorsma A, van Herwijnen MHM, Gottschalk RWH, Kleinjans JCS, van Delft JHM (2009) Discrimination for genotoxic and nongenotoxic carcinogens by gene expression profiling in primary mouse hepatocytes improves with exposure time. Toxicol Sci 112(2):374–384

    Article  PubMed  CAS  Google Scholar 

  • Mathijs K, Brauers KJ, Jennen DG, Lizarraga D, Kleinjans JC, van Delft JH (2010) Gene expression profiling in primary mouse hepatocytes discriminates true from false-positive genotoxic compounds. Mutagenesis 25(6):561–568

    Article  PubMed  CAS  Google Scholar 

  • Mielke H, Anger LT, Schug M, Hengstler JG, Stahlmann R, Gundert-Remy U (2010) A physiologically based toxicokinetic modelling approach to predict relevant concentrations for in vitro testing. Arch Toxicol 85:555–563

    Article  PubMed  Google Scholar 

  • Pelkonen O, Kapitulnik J, Gundert-Remy U, Boobis AR, Stockis A (2008) Local kinetics and dynamics of xenobiotics. Crit Rev Toxicol 38(8):697–720

    Article  PubMed  CAS  Google Scholar 

  • Schmitt W (2008) General approach for the calculation of tissue to plasma partition coefficient. Toxicol In Vitro 22:457–467

    Article  PubMed  CAS  Google Scholar 

  • Schug M, Heise T, Bauer A, Storm D, Blaszkewicz M, Bedawy E, Brulport M, Geppert B, Hermes M, Föllmann W, Rapp K, Maccoux L, Schormann W, Appel KE, Oberemm A, Gundert-Remy U, Hengstler JG (2008) Primary rat hepatocytes as in vitro system for gene expression studies: comparison of sandwich, Matrigel and 2D cultures. Arch Toxicol 82(12):923–931

    Article  PubMed  CAS  Google Scholar 

  • Uehara T, Minowa Y, Morikawa Y, Kondo C, Maruyama T, Kato I, Nakatsu N, Igarashi Y, Ono A, Hayashi H, Mitsumori K, Yamada H, Ohno Y, Urushidani T (2011) Prediction model of potential hepatocarcinogenicity of rat hepatocarcinogens using a large-scale toxicogenomics database. Toxicol Appl Pharmacol 255:297–306

    Article  PubMed  CAS  Google Scholar 

  • Ullrich A, Stolz DB, Ellis EC, Strom SC, Michalopoulos GK, Hengstler JG, Runge D (2009) Long term cultures of primary human hepatocytes as an alternative to drug testing in animals. ALTEX 26(4):295–302

    PubMed  Google Scholar 

  • Van Kesteren PC, Zwart PE, Pennings JL, Gottschalk WH, Kleinjans JC, van Delft JH, van Steeg H, Luijten M (2011) Deregulation of cancer-related pathways in primary hepatocytes derived from DNA repair-deficient Xpa-/-p53 ± mice upon exposure to benzo[a]pyrene. Toxicol Sci 123(1):123–132

    Article  PubMed  Google Scholar 

  • Vinken M, Decrock E, Doktorova T, Ramboer E, De Vuyst E, Vanhaecke T, Leybaert L, Rogiers V (2011) Characterization of spontanous cell death in monolayer cultures of primary hepatocytes. Arch Toxicol 85(12):1589–1596

    Article  PubMed  CAS  Google Scholar 

  • Zellmer S, Schmidt-Heck W, Godoy P, Wenig H, Meyer C, Lehmann T, Sparna T, Schormann W, Hammad S, Kreutz C, Timmer J, von Weizsäcker F, Thürmann PA, Merfort I, Guthke R, Dooley S, Hengstler JG, Gebhardt R (2010) Transcription factors ETF, E2F, and SP-1 are involved in cytokine-independent proliferation of murine hepatocytes. Hepatology 52:2127–2136

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the SEURAT-1 projects NOTOX (EU-Project FP 7-Health- Grant Agreement No. 267038) and DETECTIVE (EU-Project FP 7-Health-Grant Agreement No. 266838) and by the Federal Ministry of Education and Research (BMBF; Förderkennzeichen 0313854).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan G. Hengstler.

Additional information

Markus Schug, Regina Stöber and Tanja Heise contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schug, M., Stöber, R., Heise, T. et al. Pharmacokinetics explain in vivo/in vitro discrepancies of carcinogen-induced gene expression alterations in rat liver and cultivated hepatocytes. Arch Toxicol 87, 337–345 (2013). https://doi.org/10.1007/s00204-012-0999-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-012-0999-8

Keywords

Navigation