Archives of Toxicology

, Volume 87, Issue 4, pp 577–610 | Cite as

Primary hepatocyte cultures for pharmaco-toxicological studies: at the busy crossroad of various anti-dedifferentiation strategies

  • J. Fraczek
  • J. Bolleyn
  • T. Vanhaecke
  • V. Rogiers
  • M. Vinken
Review Article

Abstract

Continuously increasing understanding of the molecular triggers responsible for the onset of diseases, paralleled by an equally dynamic evolution of chemical synthesis and screening methods, offers an abundance of pharmacological agents with a potential to become new successful drugs. However, before patients can benefit of newly developed pharmaceuticals, stringent safety filters need to be applied to weed out unfavourable drug candidates. Cost effectiveness and the need to identify compound liabilities, without exposing humans to unnecessary risks, has stimulated the shift of the safety studies to the earliest stages of drug discovery and development. In this regard, in vivo relevant organotypic in vitro models have high potential to revolutionize the preclinical safety testing. They can enable automation of the process, to match the requirements of high-throughput screening approaches, while satisfying ethical considerations. Cultures of primary hepatocytes became already an inherent part of the preclinical pharmaco-toxicological testing battery, yet their routine use, particularly for long-term assays, is limited by the progressive deterioration of liver-specific features. The availability of suitable hepatic and other organ-specific in vitro models is, however, of paramount importance in the light of changing European legal regulations in the field of chemical compounds of different origin, which gradually restrict the use of animal studies for safety assessment, as currently witnessed in cosmetic industry. Fortunately, research groups worldwide spare no effort to establish hepatic in vitro systems. In the present review, both classical and innovative methodologies to stabilize the in vivo-like hepatocyte phenotype in culture of primary hepatocytes are presented and discussed.

Keywords

Drug safety testing In vitro models Primary hepatocyte cultures Dedifferentiation Epigenetics Histone deacetylases DNA methyltransferases Liver-enriched transcription factors MicroRNA 

References

  1. Allis CD, Berger SL, Cote J, Dent S, Jenuwien T, Kouzarides T, Pillus L, Reinberg D, Shi Y, Shiekhattar R, Shilatifard A, Workman J, Zhang Y (2007) New nomenclature for chromatin-modifying enzymes. Cell 131(4):633–636PubMedCrossRefGoogle Scholar
  2. Ananthanarayanan A, Narmada BC, Mo X, McMillian M, Yu H (2011) Purpose-driven biomaterials research in liver-tissue engineering. Trends Biotechnol 29(3):110–118PubMedCrossRefGoogle Scholar
  3. Aninat C, Piton A, Glaise D, Le Charpentier T, Langouet S, Morel F, Guguen-Guillouzo C, Guillouzo A (2006) Expression of cytochromes P450, conjugating enzymes and nuclear receptors in human hepatoma HepaRG cells. Drug Metab Dispos 34(1):75–83PubMedCrossRefGoogle Scholar
  4. Auge-Gouillou C, Petropoulos I, Zakin MM (1993) Liver-enriched HNF-3 alpha and ubiquitous factors interact with the human transferrin gene enhancer. FEBS Lett 323(1–2):4–10PubMedCrossRefGoogle Scholar
  5. Auth MK, Woitaschek D, Beste M, Schreiter T, Kim HS, Oppermann E, Joplin RE, Baumann U, Hilgard P, Nadalin S, Markus BH, Blaheta RA (2005) Preservation of the synthetic and metabolic capacity of isolated human hepatocytes by coculture with human biliary epithelial cells. Liver Transpl 11(4):410–419PubMedCrossRefGoogle Scholar
  6. Auyeung DJ, Kessler FK, Ritter JK (2001) An alternative promoter contributes to tissue- and inducer-specific expression of the rat UDP-glucuronosyltransferase 1A6 gene. Toxicol Appl Pharmacol 174(1):60–68PubMedCrossRefGoogle Scholar
  7. Bader A, Fruhauf N, Tiedge M, Drinkgern M, De Bartolo L, Borlak JT, Steinhoff G, Haverich A (1999) Enhanced oxygen delivery reverses anaerobic metabolic states in prolonged sandwich rat hepatocyte culture. Exp Cell Res 246(1):221–232PubMedCrossRefGoogle Scholar
  8. Baker TK, Carfagna MA, Gao H, Dow ER, Li Q, Searfoss GH, Ryan TP (2001) Temporal gene expression analysis of monolayer cultured rat hepatocytes. Chem Res Toxicol 14(9):1218–1231PubMedCrossRefGoogle Scholar
  9. Bakker J, Lin X, Nelson WG (2002) Methyl-CpG binding domain protein 2 represses transcription from hypermethylated pi-class glutathione S-transferase gene promoters in hepatocellular carcinoma cells. J Biol Chem 277(25):22573–22580PubMedCrossRefGoogle Scholar
  10. Ban N, Yamada Y, Someya Y, Miyawaki K, Ihara Y, Hosokawa M, Toyokuni S, Tsuda K, Seino Y (2002) Hepatocyte nuclear factor-1alpha recruits the transcriptional co-activator p300 on the GLUT2 gene promoter. Diabetes 51(5):1409–1418PubMedCrossRefGoogle Scholar
  11. Bantscheff M, Hopf C, Savitski MM, Dittmann A, Grandi P, Michon AM, Schlegl J, Abraham Y, Becher I, Bergamini G, Boesche M, Delling M, Dumpelfeld B, Eberhard D, Huthmacher C, Mathieson T, Poeckel D, Reader V, Strunk K, Sweetman G, Kruse U, Neubauer G, Ramsden NG, Drewes G (2011) Chemoproteomics profiling of HDAC inhibitors reveals selective targeting of HDAC complexes. Nat Biotechnol 29(3):255–265PubMedCrossRefGoogle Scholar
  12. Barbier O, Girard H, Inoue Y, Duez H, Villeneuve L, Kamiya A, Fruchart JC, Guillemette C, Gonzalez FJ, Staels B (2005) Hepatic expression of the UGT1A9 gene is governed by hepatocyte nuclear factor 4alpha. Mol Pharmacol 67(1):241–249PubMedCrossRefGoogle Scholar
  13. Bass AS, Cartwright ME, Mahon C, Morrison R, Snyder R, McNamara P, Bradley P, Zhou YY, Hunter J (2009) Exploratory drug safety: a discovery strategy to reduce attrition in development. J Pharmacol Toxicol Methods 60(1):69–78PubMedCrossRefGoogle Scholar
  14. Battle MA, Konopka G, Parviz F, Gaggl AL, Yang C, Sladek FM, Duncan SA (2006) Hepatocyte nuclear factor 4alpha orchestrates expression of cell adhesion proteins during the epithelial transformation of the developing liver. Proc Natl Acad Sci USA 103(22):8419–8424PubMedCrossRefGoogle Scholar
  15. Batty N, Malouf GG, Issa JP (2009) Histone deacetylase inhibitors as anti-neoplastic agents. Cancer Lett 280(2):192–200PubMedCrossRefGoogle Scholar
  16. Baudoin R, Corlu A, Griscom L, Legallais C, Leclerc E (2007) Trends in the development of microfluidic cell biochips for in vitro hepatotoxicity. Toxicol In Vitro 21(4):535–544PubMedCrossRefGoogle Scholar
  17. Baylin SB (2005) DNA methylation and gene silencing in cancer. Nat Clin Pract Oncol 2(Suppl 1):S4–S11PubMedCrossRefGoogle Scholar
  18. Beigel J, Fella K, Kramer PJ, Kroeger M, Hewitt P (2008) Genomics and proteomics analysis of cultured primary rat hepatocytes. Toxicol In Vitro 22(1):171–181PubMedCrossRefGoogle Scholar
  19. Beken S, Pauwels M, Pahernik S, Koebe HG, Vercruysse A, Rogiers V (1997a) Collagen gel sandwich and immobilization cultures of rat hepatocytes: problems encountered in expressing glutathione S-transferase activities. Toxicol In Vitro 11(6):741–752PubMedCrossRefGoogle Scholar
  20. Beken S, Tytgat T, Pahernik S, Koebe HG, Vercruysse A, Rogiers V (1997b) Cell morphology, albumin secretion and glutathione S-transferase expression in collagen gel sandwich and immobilization cultures of rat hepatocytes. Toxicol In Vitro 11(5):409–416PubMedCrossRefGoogle Scholar
  21. Beken S, Vanhaecke T, De Smet K, Pauwels M, Vercruysse A, Rogiers V (1998) Collagen-gel cultures of rat hepatocytes: collagen-gel sandwich and immobilization cultures. Methods Mol Biol 107:303–309PubMedGoogle Scholar
  22. Bernard P, Goudonnet H, Artur Y, Desvergne B, Wahli W (1999) Activation of the mouse TATA-less and human TATA-containing UDP-glucuronosyltransferase 1A1 promoters by hepatocyte nuclear factor 1. Mol Pharmacol 56(3):526–536PubMedGoogle Scholar
  23. Berry MN, Friend DS (1969) High-yield preparation of isolated rat liver parenchymal cells: a biochemical and fine structural study. J Cell Biol 43(3):506–520PubMedCrossRefGoogle Scholar
  24. Bhadriraju K, Hansen LK (2000) Hepatocyte adhesion, growth and differentiated function on RGD-containing proteins. Biomaterials 21(3):267–272PubMedCrossRefGoogle Scholar
  25. Bhatia SN, Balis UJ, Yarmush ML, Toner M (1998a) Microfabrication of hepatocyte/fibroblast co-cultures: role of homotypic cell interactions. Biotechnol Prog 14(3):378–387PubMedCrossRefGoogle Scholar
  26. Bhatia SN, Balis UJ, Yarmush ML, Toner M (1998b) Probing heterotypic cell interactions: hepatocyte function in microfabricated co-cultures. J Biomater Sci Polym Ed 9(11):1137–1160PubMedCrossRefGoogle Scholar
  27. Bierwolf J, Lutgehetmann M, Feng K, Erbes J, Deichmann S, Toronyi E, Stieglitz C, Nashan B, Ma PX, Pollok JM (2011) Primary rat hepatocyte culture on 3D nanofibrous polymer scaffolds for toxicology and pharmaceutical research. Biotechnol Bioeng 108(1):141–150PubMedCrossRefGoogle Scholar
  28. Binda D, Lasserre-Bigot D, Bonet A, Thomassin M, Come MP, Guinchard C, Bars R, Jacqueson A, Richert L (2003) Time course of cytochromes P450 decline during rat hepatocyte isolation and culture: effect of L-NAME. Toxicol In Vitro 17(1):59–67PubMedCrossRefGoogle Scholar
  29. Bisaha JG, Simon TC, Gordon JI, Breslow JL (1995) Characterization of an enhancer element in the human apolipoprotein C-III gene that regulates human apolipoprotein A-I gene expression in the intestinal epithelium. J Biol Chem 270(34):19979–19988PubMedCrossRefGoogle Scholar
  30. Boess F, Kamber M, Romer S, Gasser R, Muller D, Albertini S, Suter L (2003) Gene expression in two hepatic cell lines, cultured primary hepatocytes, and liver slices compared to the in vivo liver gene expression in rats: possible implications for toxicogenomics use of in vitro systems. Toxicol Sci 73(2):386–402PubMedCrossRefGoogle Scholar
  31. Bois-Joyeux B, Danan JL (1994) Members of the CAAT/enhancer-binding protein, hepatocyte nuclear factor-1 and nuclear factor-1 families can differentially modulate the activities of the rat alpha-fetoprotein promoter and enhancer. Biochem J 301(Pt 1):49–55PubMedGoogle Scholar
  32. Bolden JE, Peart MJ, Johnstone RW (2006) Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 5(9):769–784PubMedCrossRefGoogle Scholar
  33. Bolleyn J, Fraczek J, Vinken M, Lizarraga D, Gaj S, van Delft JH, Rogiers V, Vanhaecke T (2011) Effect of Trichostatin A on miRNA expression in cultures of primary rat hepatocytes. Toxicol In Vitro 25(6):1173–1182PubMedCrossRefGoogle Scholar
  34. Bolotin E, Liao H, Ta TC, Yang C, Hwang-Verslues W, Evans JR, Jiang T, Sladek FM (2010) Integrated approach for the identification of human hepatocyte nuclear factor 4alpha target genes using protein binding microarrays. Hepatology 51(2):642–653PubMedCrossRefGoogle Scholar
  35. Bort R, Gomez-Lechon MJ, Castell JV, Jover R (2004) Role of hepatocyte nuclear factor 3 gamma in the expression of human CYP2C genes. Arch Biochem Biophys 426(1):63–72PubMedCrossRefGoogle Scholar
  36. Bots M, Johnstone RW (2009) Rational combinations using HDAC inhibitors. Clin Cancer Res 15(12):3970–3977PubMedCrossRefGoogle Scholar
  37. Braconi C, Huang N, Patel T (2010) MicroRNA-dependent regulation of DNA methyltransferase-1 and tumor suppressor gene expression by interleukin-6 in human malignant cholangiocytes. Hepatology 51(3):881–890PubMedGoogle Scholar
  38. Brooks AR, Levy-Wilson B (1992) Hepatocyte nuclear factor 1 and C/EBP are essential for the activity of the human apolipoprotein B gene second-intron enhancer. Mol Cell Biol 12(3):1134–1148PubMedGoogle Scholar
  39. Brooks AR, Blackhart BD, Haubold K, Levy-Wilson B (1991) Characterization of tissue-specific enhancer elements in the second intron of the human apolipoprotein B gene. J Biol Chem 266(12):7848–7859PubMedGoogle Scholar
  40. Brueckner B, Garcia Boy R, Siedlecki P, Musch T, Kliem HC, Zielenkiewicz P, Suhai S, Wiessler M, Lyko F (2005) Epigenetic reactivation of tumor suppressor genes by a novel small-molecule inhibitor of human DNA methyltransferases. Cancer Res 65(14):6305–6311PubMedCrossRefGoogle Scholar
  41. Burt AD, Day CP (2002) Pathophysiology of the liver. Pathology of the liver. Churchill Livingstone, New YorkGoogle Scholar
  42. Cairns W, Smith CA, McLaren AW, Wolf CR (1996) Characterization of the human cytochrome P4502D6 promoter. A potential role for antagonistic interactions between members of the nuclear receptor family. J Biol Chem 271(41):25269–25276PubMedCrossRefGoogle Scholar
  43. Cameron EE, Bachman KE, Myohanen S, Herman JG, Baylin SB (1999) Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet 21(1):103–107PubMedCrossRefGoogle Scholar
  44. Caperna TJ, Blomberg LA, Garrett WM, Talbot NC (2011) Culture of porcine hepatocytes or bile duct epithelial cells by inductive serum-free media. In Vitro Cell Dev Biol Anim 47(3):218–233PubMedCrossRefGoogle Scholar
  45. Carrier JS, Turgeon D, Journault K, Hum DW, Belanger A (2000) Isolation and characterization of the human UGT2B7 gene. Biochem Biophys Res Commun 272(2):616–621PubMedCrossRefGoogle Scholar
  46. Castell JV, Jover R, Martinez-Jimenez CP, Gomez-Lechon MJ (2006) Hepatocyte cell lines: their use, scope and limitations in drug metabolism studies. Expert Opin Drug Metab Toxicol 2(2):183–212PubMedCrossRefGoogle Scholar
  47. Castro RE, Ferreira DM, Zhang X, Borralho PM, Sarver AL, Zeng Y, Steer CJ, Kren BT, Rodrigues CM (2010) Identification of microRNAs during rat liver regeneration after partial hepatectomy and modulation by ursodeoxycholic acid. Am J Physiol Gastrointest Liver Physiol 299(4):G887–G897PubMedCrossRefGoogle Scholar
  48. Cereghini S (1996) Liver-enriched transcription factors and hepatocyte differentiation. Faseb J 10(2):267–282PubMedGoogle Scholar
  49. Champion C, Guianvarc’h D, Senamaud-Beaufort C, Jurkowska RZ, Jeltsch A, Ponger L, Arimondo PB, Guieysse-Peugeot AL (2010) Mechanistic insights on the inhibition of c5 DNA methyltransferases by zebularine. PLoS ONE 5(8):e12388PubMedCrossRefGoogle Scholar
  50. Chen D, Lepar G, Kemper B (1994) A transcriptional regulatory element common to a large family of hepatic cytochrome P450 genes is a functional binding site of the orphan receptor HNF-4. J Biol Chem 269(7):5420–5427PubMedGoogle Scholar
  51. Chen J, Cooper AD, Levy-Wilson B (1999) Hepatocyte nuclear factor 1 binds to and transactivates the human but not the rat CYP7A1 promoter. Biochem Biophys Res Commun 260(3):829–834PubMedCrossRefGoogle Scholar
  52. Chen T, Hevi S, Gay F, Tsujimoto N, He T, Zhang B, Ueda Y, Li E (2007) Complete inactivation of DNMT1 leads to mitotic catastrophe in human cancer cells. Nat Genet 39(3):391–396PubMedCrossRefGoogle Scholar
  53. Cheng X, Blumenthal RM (2008) Mammalian DNA methyltransferases: a structural perspective. Structure 16(3):341–350PubMedCrossRefGoogle Scholar
  54. Cheng X, Roberts RJ (2001) AdoMet-dependent methylation, DNA methyltransferases and base flipping. Nucleic Acids Res 29(18):3784–3795PubMedCrossRefGoogle Scholar
  55. Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325(5942):834–840PubMedCrossRefGoogle Scholar
  56. Choudhuri S (2010) Small noncoding RNAs: biogenesis, function, and emerging significance in toxicology. J Biochem Mol Toxicol 24(3):195–216PubMedCrossRefGoogle Scholar
  57. Chua KN, Lim WS, Zhang P, Lu H, Wen J, Ramakrishna S, Leong KW, Mao HQ (2005) Stable immobilization of rat hepatocyte spheroids on galactosylated nanofiber scaffold. Biomaterials 26(15):2537–2547PubMedCrossRefGoogle Scholar
  58. Chuang JC, Jones PA (2007) Epigenetics and microRNAs. Pediatr Res 61(5 Pt 2):24R–29RPubMedCrossRefGoogle Scholar
  59. Chung I, Bresnick E (1997) Identification of positive and negative regulatory elements of the human cytochrome P4501A2 (CYP1A2) gene. Arch Biochem Biophys 338(2):220–226PubMedCrossRefGoogle Scholar
  60. Clairmont A, Ebert T, Weber H, Zoidl C, Eickelmann P, Schulz WA, Sies H, Ryffel GU (1994) Lowered amounts of the tissue-specific transcription factor LFB1 (HNF1) correlate with decreased levels of glutathione S-transferase alpha messenger RNA in human renal cell carcinoma. Cancer Res 54(5):1319–1323PubMedGoogle Scholar
  61. Clement B, Guguen-Guillouzo C, Campion JP, Glaise D, Bourel M, Guillouzo A (1984) Long-term co-cultures of adult human hepatocytes with rat liver epithelial cells: modulation of albumin secretion and accumulation of extracellular material. Hepatology 4(3):373–380PubMedCrossRefGoogle Scholar
  62. Codd R, Braich N, Liu J, Soe CZ, Pakchung AA (2009) Zn(II)-dependent histone deacetylase inhibitors: suberoylanilide hydroxamic acid and trichostatin A. Int J Biochem Cell Biol 41(4):736–739PubMedCrossRefGoogle Scholar
  63. Colnot S, Perret C (2007) Liver zonation. In: Monoga SPS (ed) Molecular pathology of liver diseases. Springer, BerlinGoogle Scholar
  64. Corlu A, Kneip B, Lhadi C, Leray G, Glaise D, Baffet G, Bourel D, Guguen-Guillouzo C (1991) A plasma membrane protein is involved in cell contact-mediated regulation of tissue-specific genes in adult hepatocytes. J Cell Biol 115(2):505–515PubMedCrossRefGoogle Scholar
  65. Corlu A, Ilyin G, Cariou S, Lamy I, Loyer P, Guguen-Guillouzo C (1997) The coculture: a system for studying the regulation of liver differentiation/proliferation activity and its control. Cell Biol Toxicol 13(4–5):235–242PubMedCrossRefGoogle Scholar
  66. Corlu A, Lamy I, Ilyin GP, Fardel O, Kneip B, Le Jossic C, Guguen-Guillouzo C (1998) Hematopoiesis-promoting activity of rat liver biliary epithelial cells: involvement of a cell surface molecule, liver-regulating protein. Exp Hematol 26(5):382–394PubMedGoogle Scholar
  67. Costa RH, Lai E, Grayson DR, Darnell JE Jr (1988) The cell-specific enhancer of the mouse transthyretin (prealbumin) gene binds a common factor at one site and a liver-specific factor(s) at two other sites. Mol Cell Biol 8(1):81–90PubMedGoogle Scholar
  68. Costa RH, Grayson DR, Darnell JE Jr (1989) Multiple hepatocyte-enriched nuclear factors function in the regulation of transthyretin and alpha 1-antitrypsin genes. Mol Cell Biol 9(4):1415–1425PubMedGoogle Scholar
  69. Courtois G, Morgan JG, Campbell LA, Fourel G, Crabtree GR (1987) Interaction of a liver-specific nuclear factor with the fibrinogen and alpha 1-antitrypsin promoters. Science 238(4827):688–692PubMedCrossRefGoogle Scholar
  70. Dannenberg LO, Edenberg HJ (2006) Epigenetics of gene expression in human hepatoma cells: expression profiling the response to inhibition of DNA methylation and histone deacetylation. BMC Genomics 7:181PubMedCrossRefGoogle Scholar
  71. Dannenberg LO, Chen HJ, Tian H, Edenberg HJ (2006) Differential regulation of the alcohol dehydrogenase 1B (ADH1B) and ADH1C genes by DNA methylation and histone deacetylation. Alcohol Clin Exp Res 30(6):928–937PubMedCrossRefGoogle Scholar
  72. Datta J, Kutay H, Nasser MW, Nuovo GJ, Wang B, Majumder S, Liu CG, Volinia S, Croce CM, Schmittgen TD, Ghoshal K, Jacob ST (2008) Methylation mediated silencing of MicroRNA-1 gene and its role in hepatocellular carcinogenesis. Cancer Res 68(13):5049–5058PubMedCrossRefGoogle Scholar
  73. de Graaf IA, Olinga P, de Jager MH, Merema MT, de Kanter R, van de Kerkhof EG, Groothuis GM (2010) Preparation and incubation of precision-cut liver and intestinal slices for application in drug metabolism and toxicity studies. Nat Protoc 5(9):1540–1551PubMedCrossRefGoogle Scholar
  74. De Kock J, Ceelen L, De Spiegelaere W, Casteleyn C, Claes P, Vanhaecke T, Rogiers V (2011) Simple and quick method for whole-liver decellularization: a novel in vitro three-dimensional bioengineering tool? Arch Toxicol 85(6):607–612PubMedCrossRefGoogle Scholar
  75. De Kock J, Rodrigues RM, Bolleyn J, Vanhaecke T, Rogiers V (2012) Focus on stem cells as sources of human target cells for in vitro research and testing. Altern Anim Exp 29:541–548Google Scholar
  76. de la Cruz CC, Kirmizis A, Simon MD, Isono K, Koseki H, Panning B (2007) The polycomb group protein SUZ12 regulates histone H3 lysine 9 methylation and HP1 alpha distribution. Chromosome Res 15(3):299–314PubMedGoogle Scholar
  77. de la Nuez A, Rodriguez R (2008) Current methodology for the assessment of ADME-Tox properties on drug candidate molecules. Biotecnol Apl 25:97–110Google Scholar
  78. de Longueville F, Atienzar FA, Marcq L, Dufrane S, Evrard S, Wouters L, Leroux F, Bertholet V, Gerin B, Whomsley R, Arnould T, Remacle J, Canning M (2003) Use of a low-density microarray for studying gene expression patterns induced by hepatotoxicants on primary cultures of rat hepatocytes. Toxicol Sci 75(2):378–392PubMedCrossRefGoogle Scholar
  79. de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB (2003) Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 370(Pt 3):737–749PubMedCrossRefGoogle Scholar
  80. Decaens C, Durand M, Grosse B, Cassio D (2008) Which in vitro models could be best used to study hepatocyte polarity? Biol Cell 100(7):387–398PubMedCrossRefGoogle Scholar
  81. Delesque-Touchard N, Park SH, Waxman DJ (2000) Synergistic action of hepatocyte nuclear factors 3 and 6 on CYP2C12 gene expression and suppression by growth hormone-activated STAT5b. Proposed model for female specific expression of CYP2C12 in adult rat liver. J Biol Chem 275(44):34173–34182PubMedCrossRefGoogle Scholar
  82. Dell H, Hadzopoulou-Cladaras M (1999) CREB-binding protein is a transcriptional coactivator for hepatocyte nuclear factor-4 and enhances apolipoprotein gene expression. J Biol Chem 274(13):9013–9021PubMedCrossRefGoogle Scholar
  83. Denslow SA, Wade PA (2007) The human Mi-2/NuRD complex and gene regulation. Oncogene 26(37):5433–5438PubMedCrossRefGoogle Scholar
  84. Dich J, Vind C, Grunnet N (1988) Long-term culture of hepatocytes: effect of hormones on enzyme activities and metabolic capacity. Hepatology 8(1):39–45. doi:S0270913988000084 PubMedCrossRefGoogle Scholar
  85. DiMasi JA, Hansen RW, Grabowski HG (2003) The price of innovation: new estimates of drug development costs. J Health Econ 22(2):151–185PubMedCrossRefGoogle Scholar
  86. Dohda T, Kaneoka H, Inayoshi Y, Kamihira M, Miyake K, Iijima S (2004) Transcriptional coactivators CBP and p300 cooperatively enhance HNF-1alpha-mediated expression of the albumin gene in hepatocytes. J Biochem 136(3):313–319PubMedCrossRefGoogle Scholar
  87. Doktorova TY, Pauwels M, Vinken M, Vanhaecke T, Rogiers V (2011) Opportunities for an alternative integrating testing strategy for carcinogen hazard assessment? Crit Rev Toxicol 42(2):91–106PubMedCrossRefGoogle Scholar
  88. Donato MT, Castell JV, Gomez-Lechon MJ (1990a) Prolonged expression of biotransformation activities of rat hepatocytes co-cultured with established cell lines. Toxicol In Vitro 4(4–5):461–466PubMedCrossRefGoogle Scholar
  89. Donato MT, Gomez-Lechon MJ, Castell JV (1990b) Drug metabolizing enzymes in rat hepatocytes co-cultured with cell lines. In Vitro Cell Dev Biol 26(11):1057–1062PubMedCrossRefGoogle Scholar
  90. Donato MT, Castell JV, Gomez-Lechon MJ (1991a) Co-cultures of hepatocytes with epithelial-like cell lines: expression of drug-biotransformation activities by hepatocytes. Cell Biol Toxicol 7(1):1–14PubMedCrossRefGoogle Scholar
  91. Donato MT, Gómez-Lechón MJ, Castell JV (1991b) Rat hepatocytes cultured on a monkey kidney cell line: expression of biotransformation and hepatic metabolic activities. Toxicol In Vitro 5(5–6):435–438. doi:0887-2333(91)90067-N PubMedCrossRefGoogle Scholar
  92. Dunn JC, Tompkins RG, Yarmush ML (1991) Long-term in vitro function of adult hepatocytes in a collagen sandwich configuration. Biotechnol Prog 7(3):237–245PubMedCrossRefGoogle Scholar
  93. Eberharter A, Becker PB (2002) Histone acetylation: a switch between repressive and permissive chromatin. Second in review series on chromatin dynamics. EMBO Rep 3(3):224–229PubMedCrossRefGoogle Scholar
  94. Edwards AM, Glistak ML, Lucas CM, Wilson PA (1984) 7-Ethoxycoumarin deethylase activity as a convenient measure of liver drug metabolizing enzymes: regulation in cultured rat hepatocytes. Biochem Pharmacol 33(9):1537–1546. doi:0006-2952(84)90425-8 PubMedCrossRefGoogle Scholar
  95. El-Ali J, Sorger PK, Jensen KF (2006) Cells on chips. Nature 442(7101):403–411PubMedCrossRefGoogle Scholar
  96. Elaut G, Torok G, Vinken M, Laus G, Papeleu P, Tourwe D, Rogiers V (2002) Major phase I biotransformation pathways of Trichostatin a in rat hepatocytes and in rat and human liver microsomes. Drug Metab Dispos 30(12):1320–1328PubMedCrossRefGoogle Scholar
  97. Elaut G, Henkens T, Papeleu P, Snykers S, Vinken M, Vanhaecke T, Rogiers V (2006) Molecular mechanisms underlying the dedifferentiation process of isolated hepatocytes and their cultures. Curr Drug Metab 7(6):629–660PubMedCrossRefGoogle Scholar
  98. Elaut G, Laus G, Alexandre E, Richert L, Bachellier P, Tourwe D, Rogiers V, Vanhaecke T (2007) A metabolic screening study of trichostatin A (TSA) and TSA-like histone deacetylase inhibitors in rat and human primary hepatocyte cultures. J Pharmacol Exp Ther 321(1):400–408PubMedCrossRefGoogle Scholar
  99. Elferink MG, Olinga P, Draaisma AL, Merema MT, Bauerschmidt S, Polman J, Schoonen WG, Groothuis GM (2008) Microarray analysis in rat liver slices correctly predicts in vivo hepatotoxicity. Toxicol Appl Pharmacol 229(3):300–309PubMedCrossRefGoogle Scholar
  100. Elmen J, Lindow M, Silahtaroglu A, Bak M, Christensen M, Lind-Thomsen A, Hedtjarn M, Hansen JB, Hansen HF, Straarup EM, McCullagh K, Kearney P, Kauppinen S (2008) Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver. Nucleic Acids Res 36(4):1153–1162PubMedCrossRefGoogle Scholar
  101. Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M, Watts L, Booten SL, Graham M, McKay R, Subramaniam A, Propp S, Lollo BA, Freier S, Bennett CF, Bhanot S, Monia BP (2006) miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 3(2):87–98PubMedCrossRefGoogle Scholar
  102. EU (2003) Directive 2003/15/EC of the European parliament and of the council of 27 February 2003 amending Council directive 76/768/EEC on the approximation of the laws of the member states relating to cosmetic productsGoogle Scholar
  103. Evenou F, Couderc S, Kim B, Fujii T, Sakai Y (2011a) Microfibrillated cellulose sheets coating oxygen-permeable PDMS membranes induce rat hepatocytes 3D aggregation into stably-attached 3D hemispheroids. J Biomater Sci Polym Ed 22(11):1509–1522PubMedCrossRefGoogle Scholar
  104. Evenou F, Hamon M, Fujii T, Takeuchi S, Sakai Y (2011b) Gas-permeable membranes and co-culture with fibroblasts enable high-density hepatocyte culture as multilayered liver tissues. Biotechnol Prog 27(4):1146–1153Google Scholar
  105. Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E, Liu S, Alder H, Costinean S, Fernandez-Cymering C, Volinia S, Guler G, Morrison CD, Chan KK, Marcucci G, Calin GA, Huebner K, Croce CM (2007) MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci USA 104(40):15805–15810PubMedCrossRefGoogle Scholar
  106. Farkas D, Tannenbaum SR (2005) Characterization of chemically induced hepatotoxicity in collagen sandwiches of rat hepatocytes. Toxicol Sci 85(2):927–934PubMedCrossRefGoogle Scholar
  107. Farkas D, Bhat VB, Mandapati S, Wishnok JS, Tannenbaum SR (2005) Characterization of the secreted proteome of rat hepatocytes cultured in collagen sandwiches. Chem Res Toxicol 18(7):1132–1139PubMedCrossRefGoogle Scholar
  108. Ferguson SS, Chen Y, LeCluyse EL, Negishi M, Goldstein JA (2005) Human CYP2C8 is transcriptionally regulated by the nuclear receptors constitutive androstane receptor, pregnane X receptor, glucocorticoid receptor, and hepatic nuclear factor 4alpha. Mol Pharmacol 68(3):747–757PubMedGoogle Scholar
  109. Field JM, Tate LA, Chipman JK, Minchin SD (2003) Identification of functional regulatory regions of the connexin32 gene promoter. Biochim Biophys Acta 1628(1):22–29PubMedCrossRefGoogle Scholar
  110. Fielden MR, Kolaja KL (2008) The role of early in vivo toxicity testing in drug discovery toxicology. Expert Opin Drug Saf 7(2):107–110PubMedCrossRefGoogle Scholar
  111. Figueiredo MS, Brownlee GG (1995) cis-acting elements and transcription factors involved in the promoter activity of the human factor VIII gene. J Biol Chem 270(20):11828–11838PubMedCrossRefGoogle Scholar
  112. Fraczek J, Deleu S, Lukaszuk A, Doktorova T, Tourwe D, Geerts A, Vanhaecke T, Vanderkerken K, Rogiers V (2009a) Screening of amide analogues of Trichostatin A in cultures of primary rat hepatocytes: search for potent and safe HDAC inhibitors. Invest New Drugs 27(4):338–346PubMedCrossRefGoogle Scholar
  113. Fraczek J, van Grunsven LA, Vinken M, Snykers S, Deleu S, Vanderkerken K, Vanhaecke T, Rogiers V (2009b) Histone Deacetylase inhibition and the regulation of cell growth with particular reference to liver pathobiology. J Cell Mol Med 13(9B):2990–3005Google Scholar
  114. Fraczek JE, Vinken M, Tourwe D, Vanhaecke T, Rogiers V (2011) Synergetic effects of DNA demethylation and histone deacetylase inhibition in primary rat hepatocytes. Invest New Drugs 30(4):1715–1724PubMedCrossRefGoogle Scholar
  115. Gallinari P, Di Marco S, Jones P, Pallaoro M, Steinkuhler C (2007) HDACs, histone deacetylation and gene transcription: from molecular biology to cancer therapeutics. Cell Res 17(3):195–211PubMedGoogle Scholar
  116. Gardner-Stephen DA, Mackenzie PI (2007) Isolation of the UDP-glucuronosyltransferase 1A3 and 1A4 proximal promoters and characterization of their dependence on the transcription factor hepatocyte nuclear factor 1alpha. Drug Metab Dispos 35(1):116–120PubMedCrossRefGoogle Scholar
  117. Garside H, Stevens A, Farrow S, Normand C, Houle B, Berry A, Maschera B, Ray D (2004) Glucocorticoid ligands specify different interactions with NF-kappaB by allosteric effects on the glucocorticoid receptor DNA binding domain. J Biol Chem 279(48):50050–50059. doi:10.1074/jbc.M407309200 PubMedCrossRefGoogle Scholar
  118. Garzon R, Liu S, Fabbri M, Liu Z, Heaphy CE, Callegari E, Schwind S, Pang J, Yu J, Muthusamy N, Havelange V, Volinia S, Blum W, Rush LJ, Perrotti D, Andreeff M, Bloomfield CD, Byrd JC, Chan K, Wu LC, Croce CM, Marcucci G (2009) MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood 113(25):6411–6418PubMedCrossRefGoogle Scholar
  119. Genove E, Schmitmeier S, Sala A, Borros S, Bader A, Griffith LG, Semino CE (2009) Functionalized self-assembling peptide hydrogel enhance maintenance of hepatocyte activity in vitro. J Cell Mol Med 13(9B):3387–3397PubMedCrossRefGoogle Scholar
  120. Glaser KB (2007) HDAC inhibitors: clinical update and mechanism-based potential. Biochem Pharmacol 74(5):659–671PubMedCrossRefGoogle Scholar
  121. Glaser KB, Staver MJ, Waring JF, Stender J, Ulrich RG, Davidsen SK (2003) Gene expression profiling of multiple histone deacetylase (HDAC) inhibitors: defining a common gene set produced by HDAC inhibition in T24 and MDA carcinoma cell lines. Mol Cancer Ther 2(2):151–163PubMedCrossRefGoogle Scholar
  122. Glozak MA, Sengupta N, Zhang X, Seto E (2005) Acetylation and deacetylation of non-histone proteins. Gene 363:15–23PubMedCrossRefGoogle Scholar
  123. Goll MG, Kirpekar F, Maggert KA, Yoder JA, Hsieh CL, Zhang X, Golic KG, Jacobsen SE, Bestor TH (2006) Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science 311(5759):395–398PubMedCrossRefGoogle Scholar
  124. Gomez-Lechon MJ, Lahoz A, Gombau L, Castell JV, Donato MT (2010) In vitro evaluation of potential hepatotoxicity induced by drugs. Curr Pharm Des 16(17):1963–1977PubMedCrossRefGoogle Scholar
  125. Gonzalez FJ (2008) Regulation of hepatocyte nuclear factor 4 alpha-mediated transcription. Drug Metab Pharmacokinet 23(1):2–7PubMedCrossRefGoogle Scholar
  126. Goral VN, Yuen PK (2011) Microfluidic platforms for hepatocyte cell culture: new technologies and applications. Ann Biomed Eng 40(6):1244–1254Google Scholar
  127. Goral VN, Hsieh YC, Petzold ON, Clark JS, Yuen PK, Faris RA (2010) Perfusion-based microfluidic device for three-dimensional dynamic primary human hepatocyte cell culture in the absence of biological or synthetic matrices or coagulants. Lab Chip 10(24):3380–3386PubMedCrossRefGoogle Scholar
  128. Gotoh Y, Ishizuka Y, Matsuura T, Niimi S (2011) Spheroid formation and expression of liver-specific functions of human hepatocellular carcinoma-derived FLC-4 cells cultured in lactose-silk fibroin conjugate sponges. Biomacromolecules 12(5):1532–1539PubMedCrossRefGoogle Scholar
  129. Goulet F, Normand C, Morin O (1988) Cellular interactions promote tissue-specific function, biomatrix deposition and junctional communication of primary cultured hepatocytes. Hepatology 8(5):1010–1018PubMedCrossRefGoogle Scholar
  130. Gowher H, Liebert K, Hermann A, Xu G, Jeltsch A (2005a) Mechanism of stimulation of catalytic activity of Dnmt3A and Dnmt3B DNA-(cytosine-C5)-methyltransferases by Dnmt3L. J Biol Chem 280(14):13341–13348PubMedCrossRefGoogle Scholar
  131. Gowher H, Stockdale CJ, Goyal R, Ferreira H, Owen-Hughes T, Jeltsch A (2005b) De novo methylation of nucleosomal DNA by the mammalian Dnmt1 and Dnmt3A DNA methyltransferases. Biochemistry 44(29):9899–9904PubMedCrossRefGoogle Scholar
  132. Grayson DR, Costa RH, Xanthopoulos KG, Darnell JE (1988) One factor recognizes the liver-specific enhancers in alpha 1-antitrypsin and transthyretin genes. Science 239(4841 Pt 1):786–788PubMedCrossRefGoogle Scholar
  133. Greenberg D, Miao CH, Ho WT, Chung DW, Davie EW (1995) Liver-specific expression of the human factor VII gene. Proc Natl Acad Sci USA 92(26):12347–12351PubMedCrossRefGoogle Scholar
  134. Greenhough S, Medine CN, Hay DC (2010) Pluripotent stem cell derived hepatocyte like cells and their potential in toxicity screening. Toxicology 278(3):250–255PubMedCrossRefGoogle Scholar
  135. Gregoretti IV, Lee YM, Goodson HV (2004) Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol 338(1):17–31PubMedCrossRefGoogle Scholar
  136. Gregory PA, Hansen AJ, Mackenzie PI (2000) Tissue specific differences in the regulation of the UDP glucuronosyltransferase 2B17 gene promoter. Pharmacogenetics 10(9):809–820PubMedCrossRefGoogle Scholar
  137. Grozinger CM, Schreiber SL (2002) Deacetylase enzymes: biological functions and the use of small-molecule inhibitors. Chem Biol 9(1):3–16PubMedCrossRefGoogle Scholar
  138. Guengerich FP (2008) Cytochrome p450 and chemical toxicology. Chem Res Toxicol 21(1):70–83. doi:10.1021/tx700079z PubMedCrossRefGoogle Scholar
  139. Guguen-Guillouzo C, Guillouzo A (1983) Modulation of functional activities in cultured rat hepatocytes. Mol Cell Biochem 53–54(1–2):35–56PubMedGoogle Scholar
  140. Guguen-Guillouzo C, Clement B, Baffet G, Beaumont C, Morel-Chany E, Glaise D, Guillouzo A (1983) Maintenance and reversibility of active albumin secretion by adult rat hepatocytes co-cultured with another liver epithelial cell type. Exp Cell Res 143(1):47–54PubMedCrossRefGoogle Scholar
  141. Guillouzo A, Corlu A, Aninat C, Glaise D, Morel F, Guguen-Guillouzo C (2007) The human hepatoma HepaRG cells: a highly differentiated model for studies of liver metabolism and toxicity of xenobiotics. Chem Biol Interact 168(1):66–73PubMedCrossRefGoogle Scholar
  142. Guo C, Sah JF, Beard L, Willson JK, Markowitz SD, Guda K (2008) The noncoding RNA, miR-126, suppresses the growth of neoplastic cells by targeting phosphatidylinositol 3-kinase signaling and is frequently lost in colon cancers. Genes Chromosomes Cancer 47(11):939–946PubMedCrossRefGoogle Scholar
  143. Guo L, Liu Y, Bai Y, Sun Y, Xiao F, Guo Y (2010) Gene expression profiling of drug-resistant small cell lung cancer cells by combining microRNA and cDNA expression analysis. Eur J Cancer 46(9):1692–1702PubMedCrossRefGoogle Scholar
  144. Guyomard C, Rialland L, Fremond B, Chesne C, Guillouzo A (1996) Influence of alginate gel entrapment and cryopreservation on survival and xenobiotic metabolism capacity of rat hepatocytes. Toxicol Appl Pharmacol 141(2):349–356PubMedCrossRefGoogle Scholar
  145. Hansen AJ, Lee YH, Gonzalez FJ, Mackenzie PI (1997) HNF1 alpha activates the rat UDP glucuronosyltransferase UGT2B1 gene promoter. DNA Cell Biol 16(2):207–214PubMedCrossRefGoogle Scholar
  146. Harnish DC, Malik S, Karathanasis SK (1994) Activation of apolipoprotein AI gene transcription by the liver-enriched factor HNF-3. J Biol Chem 269(45):28220–28226PubMedGoogle Scholar
  147. Harris AJ, Dial SL, Casciano DA (2004) Comparison of basal gene expression profiles and effects of hepatocarcinogens on gene expression in cultured primary human hepatocytes and HepG2 cells. Mutat Res 549(1–2):79–99PubMedGoogle Scholar
  148. Hayashi Y, Wang W, Ninomiya T, Nagano H, Ohta K, Itoh H (1999) Liver enriched transcription factors and differentiation of hepatocellular carcinoma. Mol Pathol 52(1):19–24PubMedCrossRefGoogle Scholar
  149. Hellebrekers DM, Griffioen AW, van Engeland M (2007) Dual targeting of epigenetic therapy in cancer. Biochim Biophys Acta 1775(1):76–91PubMedGoogle Scholar
  150. Hengstler JG, Ringel M, Biefang K, Hammel S, Milbert U, Gerl M, Klebach M, Diener B, Platt KL, Bottger T, Steinberg P, Oesch F (2000) Cultures with cryopreserved hepatocytes: applicability for studies of enzyme induction. Chem Biol Interact 125(1):51–73PubMedCrossRefGoogle Scholar
  151. Henkens T, Vinken M, Lukaszuk A, Tourwe D, Vanhaecke T, Rogiers V (2006) Differential effects of hydroxamate histone deacetylase inhibitors on cellular functionality and gap junctions in primary cultures of mitogen-stimulated hepatocytes. Toxicol Lett 178(1):37–43CrossRefGoogle Scholar
  152. Henkens T, Papeleu P, Elaut G, Vinken M, Rogiers V, Vanhaecke T (2007) Trichostatin A, a critical factor in maintaining the functional differentiation of primary cultured rat hepatocytes. Toxicol Appl Pharmacol 218(1):64–71PubMedCrossRefGoogle Scholar
  153. Hewitt NJ, Lechon MJ, Houston JB, Hallifax D, Brown HS, Maurel P, Kenna JG, Gustavsson L, Lohmann C, Skonberg C, Guillouzo A, Tuschl G, Li AP, LeCluyse E, Groothuis GM, Hengstler JG (2007) Primary hepatocytes: current understanding of the regulation of metabolic enzymes and transporter proteins, and pharmaceutical practice for the use of hepatocytes in metabolism, enzyme induction, transporter, clearance, and hepatotoxicity studies. Drug Metab Rev 39(1):159–234PubMedCrossRefGoogle Scholar
  154. Hildmann C, Riester D, Schwienhorst A (2007) Histone deacetylases–an important class of cellular regulators with a variety of functions. Appl Microbiol Biotechnol 75(3):487–497PubMedCrossRefGoogle Scholar
  155. Hiramatsu K, Matsumoto Y, Miyazaki M, Tsubouchi H, Yamamoto I, Gohda E (2005) Inhibition of hepatocyte growth factor production in human fibroblasts by ursodeoxycholic acid. Biol Pharm Bull 28(4):619–624PubMedCrossRefGoogle Scholar
  156. Hodawadekar SC, Marmorstein R (2007) Chemistry of acetyl transfer by histone modifying enzymes: structure, mechanism and implications for effector design. Oncogene 26(37):5528–5540PubMedCrossRefGoogle Scholar
  157. Höhne M, Becker-Rabbenstein V, Kahl GF, Taniguchi H (1990) Regulation of cytochrome P-450 CYPIA1 gene expression and proto-oncogene expression by growth factors in primary hepatocytes. FEBS Lett 273(1–2):219–222. doi:0014-5793(90)81089-7 PubMedCrossRefGoogle Scholar
  158. Hsiang CH, Marten NW, Straus DS (1999) Upstream region of rat serum albumin gene promoter contributes to promoter activity: presence of functional binding site for hepatocyte nuclear factor-3. Biochem J 338(Pt 2):241–249PubMedCrossRefGoogle Scholar
  159. Hu CH, Harris JE, Davie EW, Chung DW (1995) Characterization of the 5′-flanking region of the gene for the alpha chain of human fibrinogen. J Biol Chem 270(47):28342–28349PubMedCrossRefGoogle Scholar
  160. Huang Y, Shen XJ, Zou Q, Wang SP, Tang SM, Zhang GZ (2011) Biological functions of microRNAs: a review. J Physiol Biochem 67(1):129–139PubMedCrossRefGoogle Scholar
  161. Hughes CS, Postovit LM, Lajoie GA (2010) Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics 10(9):1886–1890PubMedCrossRefGoogle Scholar
  162. Hwang-Verslues WW, Sladek FM (2010) HNF4alpha–role in drug metabolism and potential drug target? Curr Opin Pharmacol 10(6):698–705PubMedCrossRefGoogle Scholar
  163. Ibeanu GC, Goldstein JA (1995) Transcriptional regulation of human CYP2C genes: functional comparison of CYP2C9 and CYP2C18 promoter regions. Biochemistry (Mosc) 34(25):8028–8036CrossRefGoogle Scholar
  164. Ichihara A (1991) Mechanisms controlling growth of hepatocytes in primary culture. Dig Dis Sci 36(4):489–493PubMedCrossRefGoogle Scholar
  165. Inoue C, Yamamoto H, Nakamura T, Ichihara A, Okamoto H (1989) Nicotinamide prolongs survival of primary cultured hepatocytes without involving loss of hepatocyte-specific functions. J Biol Chem 264(9):4747–4750PubMedGoogle Scholar
  166. Iorio MV, Piovan C, Croce CM (2010) Interplay between microRNAs and the epigenetic machinery: an intricate network. Biochim Biophys Acta 1799(10–12):694–701PubMedGoogle Scholar
  167. Ishii Y, Hansen AJ, Mackenzie PI (2000) Octamer transcription factor-1 enhances hepatic nuclear factor-1alpha-mediated activation of the human UDP glucuronosyltransferase 2B7 promoter. Mol Pharmacol 57(5):940–947PubMedGoogle Scholar
  168. Isom HC, Secott T, Georgoff I, Woodworth C, Mummaw J (1985) Maintenance of differentiated rat hepatocytes in primary culture. Proc Natl Acad Sci USA 82(10):3252–3256PubMedCrossRefGoogle Scholar
  169. Jair KW, Bachman KE, Suzuki H, Ting AH, Rhee I, Yen RW, Baylin SB, Schuebel KE (2006) De novo CpG island methylation in human cancer cells. Cancer Res 66(2):682–692PubMedCrossRefGoogle Scholar
  170. Jensen MD, Wallach DF, Sherwood P (1976) Diffusion in tissue cultures on gas-permeable and impermeable supports. J Theor Biol 56(2):443–458PubMedCrossRefGoogle Scholar
  171. Jin B, Ryu DY (2004) Regulation of CYP1A2 by histone deacetylase inhibitors in mouse hepatocytes. J Biochem Mol Toxicol 18(3):131–132PubMedCrossRefGoogle Scholar
  172. Jin B, Seong JK, Ryu DY (2005) Tissue-specific and de novo promoter methylation of the mouse glucose transporter 2. Biol Pharm Bull 28(11):2054–2057PubMedCrossRefGoogle Scholar
  173. Johnson PF (1990) Transcriptional activators in hepatocytes. Cell Growth Differ 1(1):47–52PubMedGoogle Scholar
  174. Jover R, Bort R, Gomez-Lechon MJ, Castell JV (1998) Re-expression of C/EBP alpha induces CYP2B6, CYP2C9 and CYP2D6 genes in HepG2 cells. FEBS Lett 431(2):227–230PubMedCrossRefGoogle Scholar
  175. Jover R, Bort R, Gomez-Lechon MJ, Castell JV (2001) Cytochrome P450 regulation by hepatocyte nuclear factor 4 in human hepatocytes: a study using adenovirus-mediated antisense targeting. Hepatology 33(3):668–675PubMedCrossRefGoogle Scholar
  176. Jover R, Moya M, Gomez-Lechon MJ (2009) Transcriptional regulation of cytochrome p450 genes by the nuclear receptor hepatocyte nuclear factor 4-alpha. Curr Drug Metab 10(5):508–519PubMedCrossRefGoogle Scholar
  177. Jungermann K, Kietzmann T (1996) Zonation of parenchymal and nonparenchymal metabolism in liver. Annu Rev Nutr 16:179–203PubMedCrossRefGoogle Scholar
  178. Kaestner KH (2010) The FoxA factors in organogenesis and differentiation. Curr Opin Genet Dev 20(5):527–532PubMedCrossRefGoogle Scholar
  179. Kaitin KI (2008) Obstacles and opportunities in new drug development. Clin Pharmacol Ther 83(2):210–212PubMedCrossRefGoogle Scholar
  180. Kanebratt KP, Andersson TB (2008a) Evaluation of HepaRG cells as an in vitro model for human drug metabolism studies. Drug Metab Dispos 36(7):1444–1452PubMedCrossRefGoogle Scholar
  181. Kanebratt KP, Andersson TB (2008b) HepaRG cells as an in vitro model for evaluation of cytochrome P450 induction in humans. Drug Metab Dispos 36(1):137–145PubMedCrossRefGoogle Scholar
  182. Kang KW, Cho IJ, Lee CH, Kim SG (2003) Essential role of phosphatidylinositol 3-kinase-dependent CCAAT/enhancer binding protein beta activation in the induction of glutathione S-transferase by oltipraz. J Natl Cancer Inst 95(1):53–66PubMedCrossRefGoogle Scholar
  183. Kang L, Chung BG, Langer R, Khademhosseini A (2008) Microfluidics for drug discovery and development: from target selection to product lifecycle management. Drug Discov Today 13(1–2):1–13PubMedCrossRefGoogle Scholar
  184. Kareta MS, Botello ZM, Ennis JJ, Chou C, Chedin F (2006) Reconstitution and mechanism of the stimulation of de novo methylation by human DNMT3L. J Biol Chem 281(36):25893–25902PubMedCrossRefGoogle Scholar
  185. Kasuya J, Sudo R, Mitaka T, Ikeda M, Tanishita K (2011) Hepatic stellate cell-mediated three-dimensional hepatocyte and endothelial cell triculture model. Tissue Eng Part A 17(3–4):361–370PubMedCrossRefGoogle Scholar
  186. Khetani SR, Bhatia SN (2008) Microscale culture of human liver cells for drug development. Nat Biotechnol 26(1):120–126PubMedCrossRefGoogle Scholar
  187. Kienhuis AS, Wortelboer HM, Maas WJ, van Herwijnen M, Kleinjans JC, van Delft JH, Stierum RH (2007) A sandwich-cultured rat hepatocyte system with increased metabolic competence evaluated by gene expression profiling. Toxicol In Vitro 21(5):892–901PubMedCrossRefGoogle Scholar
  188. Kiernan F (1833) The anatomy and physiology of the liver. Philos Trans R Soc Lond B 123:711–770CrossRefGoogle Scholar
  189. Kim Y, Rajagopalan P (2010) 3D hepatic cultures simultaneously maintain primary hepatocyte and liver sinusoidal endothelial cell phenotypes. PLoS ONE 5(11):e15456PubMedCrossRefGoogle Scholar
  190. Kim JJ, Park BC, Kido Y, Accili D (2001) Mitogenic and metabolic effects of type I IGF receptor overexpression in insulin receptor-deficient hepatocytes. Endocrinology 142(8):3354–3360PubMedCrossRefGoogle Scholar
  191. Kim Y, Lasher CD, Milford LM, Murali TM, Rajagopalan P (2010) A comparative study of genome-wide transcriptional profiles of primary hepatocytes in collagen sandwich and monolayer cultures. Tissue Eng Part C Methods 16(6):1449–1460PubMedCrossRefGoogle Scholar
  192. Kojima T, Mitaka T, Shibata Y, Mochizuki Y (1995) Induction and regulation of connexin26 by glucagon in primary cultures of adult rat hepatocytes. J Cell Sci 108(Pt 8):2771–2780PubMedGoogle Scholar
  193. Kojima T, Yamamoto M, Tobioka H, Mizuguchi T, Mitaka T, Mochizuki Y (1996) Changes in cellular distribution of connexins 32 and 26 during formation of gap junctions in primary cultures of rat hepatocytes. Exp Cell Res 223(2):314–326PubMedCrossRefGoogle Scholar
  194. Kola I, Landis J (2004) Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov 3(8):711–715PubMedCrossRefGoogle Scholar
  195. Kotani N, Maeda K, Watanabe T, Hiramatsu M, Gong LK, Bi YA, Takezawa T, Kusuhara H, Sugiyama Y (2011) Culture period-dependent changes in the uptake of transporter substrates in sandwich-cultured rat and human hepatocytes. Drug Metab Dispos 39(9):1503–1510PubMedCrossRefGoogle Scholar
  196. Kristensen LS, Nielsen HM, Hansen LL (2009) Epigenetics and cancer treatment. Eur J Pharmacol 625(1–3):131–142PubMedCrossRefGoogle Scholar
  197. Kyrmizi I, Hatzis P, Katrakili N, Tronche F, Gonzalez FJ, Talianidis I (2006) Plasticity and expanding complexity of the hepatic transcription factor network during liver development. Genes Dev 20(16):2293–2305PubMedCrossRefGoogle Scholar
  198. Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T (2002) Identification of tissue-specific microRNAs from mouse. Curr Biol 12(9):735–739PubMedCrossRefGoogle Scholar
  199. Laishes BA, Williams GM (1976a) Conditions affecting primary cell cultures of functional adult rat hepatocytes. 1. The effect of insulin. In Vitro 12(7):521–532PubMedCrossRefGoogle Scholar
  200. Laishes BA, Williams GM (1976b) Conditions affecting primary cell cultures of functional adult rat hepatocytes. II. Dexamethasone enhanced longevity and maintenance of morphology. In Vitro 12(12):821–832PubMedCrossRefGoogle Scholar
  201. Landry J, Bernier D, Ouellet C, Goyette R, Marceau N (1985) Spheroidal aggregate culture of rat liver cells: histotypic reorganization, biomatrix deposition, and maintenance of functional activities. J Cell Biol 101(3):914–923PubMedCrossRefGoogle Scholar
  202. Lang R, Stern MM, Smith L, Liu Y, Bharadwaj S, Liu G, Baptista PM, Bergman CR, Soker S, Yoo JJ, Atala A, Zhang Y (2011) Three-dimensional culture of hepatocytes on porcine liver tissue-derived extracellular matrix. Biomaterials 32(29):7042–7052PubMedCrossRefGoogle Scholar
  203. Lannoy VJ, Decaux JF, Pierreux CE, Lemaigre FP, Rousseau GG (2002) Liver glucokinase gene expression is controlled by the onecut transcription factor hepatocyte nuclear factor-6. Diabetologia 45(8):1136–1141PubMedCrossRefGoogle Scholar
  204. Lasher CD, Rajagopalan P, Murali TM (2011) Discovering networks of perturbed biological processes in hepatocyte cultures. PLoS ONE 6(1):e15247PubMedCrossRefGoogle Scholar
  205. Lazarou J, Pomeranz BH, Corey PN (1998) Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA 279(15):1200–1205PubMedCrossRefGoogle Scholar
  206. LeCluyse EL, Audus KL, Hochman JH (1994) Formation of extensive canalicular networks by rat hepatocytes cultured in collagen-sandwich configuration. Am J Physiol 266(6 Pt 1):C1764–C1774PubMedGoogle Scholar
  207. LeCluyse E, Bullock P, Parkinson A (1996a) Strategies for restoration and maintenance of normal hepatic structure and function in long term cultures of hepatocytes. Adv Drug Deliv Rev 22:133–186CrossRefGoogle Scholar
  208. LeCluyse EL, Bullock PL, Parkinson A, Hochman JH (1996b) Cultured rat hepatocytes. Pharm Biotechnol 8:121–159PubMedGoogle Scholar
  209. LeCluyse E, Bullock P, Madan A, Carroll K, Parkinson A (1999) Influence of extracellular matrix overlay and medium formulation on the induction of cytochrome P-450 2B enzymes in primary cultures of rat hepatocytes. Drug Metab Dispos 27(8):909–915PubMedGoogle Scholar
  210. Lee YH, Alberta JA, Gonzalez FJ, Waxman DJ (1994a) Multiple, functional DBP sites on the promoter of the cholesterol 7 alpha-hydroxylase P450 gene, CYP7. Proposed role in diurnal regulation of liver gene expression. J Biol Chem 269(20):14681–14689PubMedGoogle Scholar
  211. Lee YH, Yano M, Liu SY, Matsunaga E, Johnson PF, Gonzalez FJ (1994b) A novel cis-acting element controlling the rat CYP2D5 gene and requiring cooperativity between C/EBP beta and an Sp1 factor. Mol Cell Biol 14(2):1383–1394PubMedGoogle Scholar
  212. Legraverend C, Eguchi H, Strom A, Lahuna O, Mode A, Tollet P, Westin S, Gustafsson JA (1994) Transactivation of the rat CYP2C13 gene promoter involves HNF-1, HNF-3, and members of the orphan receptor subfamily. Biochemistry (Mosc) 33(33):9889–9897CrossRefGoogle Scholar
  213. Legube G, Trouche D (2003) Regulating histone acetyltransferases and deacetylases. EMBO Rep 4(10):944–947PubMedCrossRefGoogle Scholar
  214. Leite SB, Teixeira AP, Miranda JP, Tostoes RM, Clemente JJ, Sousa MF, Carrondo MJ, Alves PM (2011) Merging bioreactor technology with 3D hepatocyte-fibroblast culturing approaches: improved in vitro models for toxicological applications. Toxicol In Vitro 25(4):825–832PubMedCrossRefGoogle Scholar
  215. Li N, Klaassen CD (2004) Role of liver-enriched transcription factors in the down-regulation of organic anion transporting polypeptide 4 (oatp4; oatplb2; slc21a10) by lipopolysaccharide. Mol Pharmacol 66(3):694–701PubMedGoogle Scholar
  216. Li Y, Shen RF, Tsai SY, Woo SL (1988) Multiple hepatic trans-acting factors are required for in vitro transcription of the human alpha-1-antitrypsin gene. Mol Cell Biol 8(10):4362–4369PubMedGoogle Scholar
  217. Li J, Ning G, Duncan SA (2000) Mammalian hepatocyte differentiation requires the transcription factor HNF-4alpha. Genes Dev 14(4):464–474PubMedGoogle Scholar
  218. Lin B, Morris DW, Chou JY (1997) The role of HNF1alpha, HNF3gamma, and cyclic AMP in glucose-6-phosphatase gene activation. Biochemistry (Mosc) 36(46):14096–14106CrossRefGoogle Scholar
  219. Lin X, Asgari K, Putzi MJ, Gage WR, Yu X, Cornblatt BS, Kumar A, Piantadosi S, DeWeese TL, De Marzo AM, Nelson WG (2001) Reversal of GSTP1 CpG island hypermethylation and reactivation of pi-class glutathione S-transferase (GSTP1) expression in human prostate cancer cells by treatment with procainamide. Cancer Res 61(24):8611–8616PubMedGoogle Scholar
  220. Liu SY, Gonzalez FJ (1995) Role of the liver-enriched transcription factor HNF-1 alpha in expression of the CYP2E1 gene. DNA Cell Biol 14(4):285–293PubMedCrossRefGoogle Scholar
  221. Lu HF, Chua KN, Zhang PC, Lim WS, Ramakrishna S, Leong KW, Mao HQ (2005) Three-dimensional co-culture of rat hepatocyte spheroids and NIH/3T3 fibroblasts enhances hepatocyte functional maintenance. Acta Biomater 1(4):399–410PubMedCrossRefGoogle Scholar
  222. Lu JN, Wang CC, Young TH (2011) The behaviors of long-term cryopreserved human hepatocytes on different biomaterials. Artif Organs 35(3):E65–E72PubMedCrossRefGoogle Scholar
  223. Luc PV, Adesnik M, Ganguly S, Shaw PM (1996) Transcriptional regulation of the CYP2B1 and CYP2B2 genes by C/EBP-related proteins. Biochem Pharmacol 51(3):345–356PubMedCrossRefGoogle Scholar
  224. Luger K (2003) Structure and dynamic behavior of nucleosomes. Curr Opin Genet Dev 13(2):127–135PubMedCrossRefGoogle Scholar
  225. Lujambio A, Esteller M (2007) CpG island hypermethylation of tumor suppressor microRNAs in human cancer. Cell Cycle 6(12):1455–1459PubMedCrossRefGoogle Scholar
  226. Maher JM, Slitt AL, Callaghan TN, Cheng X, Cheung C, Gonzalez FJ, Klaassen CD (2006) Alterations in transporter expression in liver, kidney, and duodenum after targeted disruption of the transcription factor HNF1alpha. Biochem Pharmacol 72(4):512–522PubMedCrossRefGoogle Scholar
  227. Maire P, Wuarin J, Schibler U (1989) The role of cis-acting promoter elements in tissue-specific albumin gene expression. Science 244(4902):343–346PubMedCrossRefGoogle Scholar
  228. Malarkey DE, Johnson K, Ryan L, Boorman G, Maronpot RR (2005) New insights into functional aspects of liver morphology. Toxicol Pathol 33(1):27–34PubMedCrossRefGoogle Scholar
  229. Malik S (2003) Transcriptional regulation of the apolipoprotein AI gene. Front Biosci 8:d360–d368PubMedCrossRefGoogle Scholar
  230. Marks PA (2010) Histone deacetylase inhibitors: a chemical genetics approach to understanding cellular functions. Biochim Biophys Acta 1799(10-12):717–725Google Scholar
  231. Marquez RT, Wendlandt E, Galle CS, Keck K, McCaffrey AP (2010) MicroRNA-21 is upregulated during the proliferative phase of liver regeneration, targets Pellino-1, and inhibits NF-kappaB signaling. Am J Physiol Gastrointest Liver Physiol 298(4):G535–G541PubMedCrossRefGoogle Scholar
  232. Martinez-Jimenez CP, Gomez-Lechon MJ, Castell JV, Jover R (2005) Transcriptional regulation of the human hepatic CYP3A4: identification of a new distal enhancer region responsive to CCAAT/enhancer-binding protein beta isoforms (liver activating protein and liver inhibitory protein). Mol Pharmacol 67(6):2088–2101PubMedCrossRefGoogle Scholar
  233. Martinez-Jimenez CP, Castell JV, Gomez-Lechon MJ, Jover R (2006a) Transcriptional activation of CYP2C9, CYP1A1, and CYP1A2 by hepatocyte nuclear factor 4alpha requires coactivators peroxisomal proliferator activated receptor-gamma coactivator 1alpha and steroid receptor coactivator 1. Mol Pharmacol 70(5):1681–1692PubMedCrossRefGoogle Scholar
  234. Martinez-Jimenez CP, Gomez-Lechon MJ, Castell JV, Jover R (2006b) Underexpressed coactivators PGC1alpha and SRC1 impair hepatocyte nuclear factor 4 alpha function and promote dedifferentiation in human hepatoma cells. J Biol Chem 281(40):29840–29849PubMedCrossRefGoogle Scholar
  235. Matsumoto T, Kawakami M (1982) The unit-concept of hepatic parenchyma–a re-examination based on angioarchitectural studies. Acta Pathol Jpn 32(Suppl 2):285–314PubMedGoogle Scholar
  236. Matsuno F, Chowdhury S, Gotoh T, Iwase K, Matsuzaki H, Takatsuki K, Mori M, Takiguchi M (1996) Induction of the C/EBP beta gene by dexamethasone and glucagon in primary-cultured rat hepatocytes. J Biochem 119(3):524–532PubMedCrossRefGoogle Scholar
  237. Maurel P (2010) Hepatocytes. Springer protocols. Springer, New YorkCrossRefGoogle Scholar
  238. McCuskey RS (2008) The hepatic microvascular system in health and its response to toxicants. Anat Rec (Hoboken) 291(6):661–671CrossRefGoogle Scholar
  239. McMillan JM, Shaddock JG, Casciano DA, Arlotto MP, Leakey JE (1991) Differential stability of drug-metabolizing enzyme activities in primary rat hepatocytes, cultured in the absence or presence of dexamethasone. Mutat Res 249(1):81–92. doi:0027-5107(91)90134-A PubMedCrossRefGoogle Scholar
  240. Mesnil M, Fraslin JM, Piccoli C, Yamasaki H, Guguen-Guillouzo C (1987) Cell contact but not junctional communication (dye coupling) with biliary epithelial cells is required for hepatocytes to maintain differentiated functions. Exp Cell Res 173(2):524–533PubMedCrossRefGoogle Scholar
  241. Metz RP, Auyeung DJ, Kessler FK, Ritter JK (2000) Involvement of hepatocyte nuclear factor 1 in the regulation of the UDP-glucuronosyltransferase 1A7 (UGT1A7) gene in rat hepatocytes. Mol Pharmacol 58(2):319–327PubMedGoogle Scholar
  242. Metzger S, Halaas JL, Breslow JL, Sladek FM (1993) Orphan receptor HNF-4 and bZip protein C/EBP alpha bind to overlapping regions of the apolipoprotein B gene promoter and synergistically activate transcription. J Biol Chem 268(22):16831–16838PubMedGoogle Scholar
  243. Michalopoulos GK, DeFrances MC (1997) Liver regeneration. Science 276(5309):60–66PubMedCrossRefGoogle Scholar
  244. Mietus-Snyder M, Sladek FM, Ginsburg GS, Kuo CF, Ladias JA, Darnell JE Jr, Karathanasis SK (1992) Antagonism between apolipoprotein AI regulatory protein 1, Ear3/COUP-TF, and hepatocyte nuclear factor 4 modulates apolipoprotein CIII gene expression in liver and intestinal cells. Mol Cell Biol 12(4):1708–1718PubMedGoogle Scholar
  245. Millonig JH, Emerson JA, Levorse JM, Tilghman SM (1995) Molecular analysis of the distal enhancer of the mouse alpha-fetoprotein gene. Mol Cell Biol 15(7):3848–3856PubMedGoogle Scholar
  246. Minucci S, Pelicci PG (2006) Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer 6(1):38–51PubMedCrossRefGoogle Scholar
  247. Miranda JP, Leite SB, Muller-Vieira U, Rodrigues A, Carrondo MJT, Alves PM (2009) Towards an extended functional hepatocyte in vitro culture. Tissue Eng Part C 15(2):157–167CrossRefGoogle Scholar
  248. Mitsiades CS, Mitsiades NS, McMullan CJ, Poulaki V, Shringarpure R, Hideshima T, Akiyama M, Chauhan D, Munshi N, Gu X, Bailey C, Joseph M, Libermann TA, Richon VM, Marks PA, Anderson KC (2004) Transcriptional signature of histone deacetylase inhibition in multiple myeloma: biological and clinical implications. Proc Natl Acad Sci USA 101(2):540–545PubMedCrossRefGoogle Scholar
  249. Miyazaki M, Mars WM, Michalopoulos GK, Namba M (1998a) Dose-dependent biphasic effects of phenobarbital on growth and differentiation of primary culture rat hepatocytes. J Gastroenterol Hepatol 13(Suppl):S78–S82PubMedGoogle Scholar
  250. Miyazaki M, Mars WM, Runge D, Kim TH, Bowen WC, Michalopoulos GK (1998b) Phenobarbital suppresses growth and accelerates restoration of differentiation markers of primary culture rat hepatocytes in the chemically defined hepatocyte growth medium containing hepatocyte growth factor and epidermal growth factor. Exp Cell Res 241(2):445–457PubMedCrossRefGoogle Scholar
  251. Mizuguchi T, Mitaka T, Hirata K, Oda H, Mochizuki Y (1998) Alteration of expression of liver-enriched transcription factors in the transition between growth and differentiation of primary cultured rat hepatocytes. J Cell Physiol 174(3):273–284PubMedCrossRefGoogle Scholar
  252. Monaci P, Nicosia A, Cortese R (1988) Two different liver-specific factors stimulate in vitro transcription from the human alpha 1-antitrypsin promoter. EMBO J 7(7):2075–2087PubMedGoogle Scholar
  253. Morin O, Normand C (1986) Long-term maintenance of hepatocyte functional activity in co-culture: requirements for sinusoidal endothelial cells and dexamethasone. J Cell Physiol 129(1):103–110PubMedCrossRefGoogle Scholar
  254. Mousa SA, Cheresh DA (1997) Recent advances in cell adhesion molecules and extracellular matrix proteins: potential clinical implications. Drug Discov Today 2:187CrossRefGoogle Scholar
  255. Muller AS, Pallauf J (2003) Effect of increasing selenite concentrations, vitamin E supplementation and different fetal calf serum content on GPx1 activity in primary cultured rabbit hepatocytes. J Trace Elem Med Biol 17(3):183–192PubMedCrossRefGoogle Scholar
  256. Musat AI, Sattler CA, Sattler GL, Pitot HC (1993) Reestablishment of cell polarity of rat hepatocytes in primary culture. Hepatology 18(1):198–205PubMedCrossRefGoogle Scholar
  257. Naiki T, Nagaki M, Shidoji Y, Kojima H, Imose M, Kato T, Ohishi N, Yagi K, Moriwaki H (2002) Analysis of gene expression profile induced by hepatocyte nuclear factor 4alpha in hepatoma cells using an oligonucleotide microarray. J Biol Chem 277(16):14011–14019PubMedCrossRefGoogle Scholar
  258. Naiki T, Nagaki M, Shidoji Y, Kojima H, Moriwaki H (2004) Functional activity of human hepatoma cells transfected with adenovirus-mediated hepatocyte nuclear factor (HNF)-4 gene. Cell Transplant 13(4):393–403PubMedCrossRefGoogle Scholar
  259. Naiki T, Nagaki M, Asano T, Kimata T, Moriwaki H (2005) Adenovirus-mediated hepatocyte nuclear factor-4alpha overexpression maintains liver phenotype in cultured rat hepatocytes. Biochem Biophys Res Commun 335(2):496–500PubMedCrossRefGoogle Scholar
  260. Nakamura T, Mura T, Saito K, Ohsawa T, Akiyoshi H, Sato K (1998) Adenovirus-transferred HNF-3 gamma conserves some liver functions in primary cultured hepatocytes of adult rats. Biochem Biophys Res Commun 253(2):352–357PubMedCrossRefGoogle Scholar
  261. Nakamura K, Kato N, Aizawa K, Mizutani R, Yamauchi J, Tanoue A (2011a) Expression of albumin and cytochrome P450 enzymes in HepG2 cells cultured with a nanotechnology-based culture plate with microfabricated scaffold. J Toxicol Sci 36(5):625–633PubMedCrossRefGoogle Scholar
  262. Nakamura K, Mizutani R, Sanbe A, Enosawa S, Kasahara M, Nakagawa A, Ejiri Y, Murayama N, Miyamoto Y, Torii T, Kusakawa S, Yamauchi J, Fukuda M, Yamazaki H, Tanoue A (2011b) Evaluation of drug toxicity with hepatocytes cultured in a micro-space cell culture system. J Biosci Bioeng 111(1):78–84PubMedCrossRefGoogle Scholar
  263. Nakatsuka H, Sokabe T, Yamamoto K, Sato Y, Hatakeyama K, Kamiya A, et al (2006) Shear stress induces hepatocyte PAI-1 gene expression through cooperative Sp1/Ets-1 activation of transcription. Am J Physiol Gastrointest Liver Physiol 291(1):G26–34Google Scholar
  264. Nallani SC, Strong JM, Huang SM (2007) Use of hepatocytes for characterizing a candidate drug’s metabolism and drug interaction potential. In: Sahu SC (ed) Hepetoxicity: from genomics to in vitro and in vivo models. Wiley, LondonGoogle Scholar
  265. Nerlov C (2008) C/EBPs: recipients of extracellular signals through proteome modulation. Curr Opin Cell Biol 20(2):180–185PubMedCrossRefGoogle Scholar
  266. Nishimura M, Ejiri Y, Kishimoto S, Suzuki S, Satoh T, Horie T, Narimatsu S, Naito S (2010a) Expression levels of drug-metabolizing enzyme, transporter, and nuclear receptor mRNAs in a novel three-dimensional culture system for human hepatocytes using micro-space plates. Drug Metab Pharmacokinet 26(2):137–144PubMedCrossRefGoogle Scholar
  267. Nishimura M, Hagi M, Ejiri Y, Kishimoto S, Horie T, Narimatsu S, Naito S (2010b) Secretion of albumin and induction of CYP1A2 and CYP3A4 in novel three-dimensional culture system for human hepatocytes using micro-space plate. Drug Metab Pharmacokinet 25(3):236–242PubMedCrossRefGoogle Scholar
  268. Nishimura M, Ejiri Y, Kishimoto S, Suzuki S, Satoh T, Horie T, Narimatsu S, Naito S (2011) Expression levels of drug-metabolizing enzyme, transporter, and nuclear receptor mRNAs in a novel three-dimensional culture system for human hepatocytes using micro-space plates. Drug Metab Pharmacokinet 26(2):137–144PubMedCrossRefGoogle Scholar
  269. Nishiyori A, Tashiro H, Kimura A, Akagi K, Yamamura K, Mori M, Takiguchi M (1994) Determination of tissue specificity of the enhancer by combinatorial operation of tissue-enriched transcription factors. Both HNF-4 and C/EBP beta are required for liver-specific activity of the ornithine transcarbamylase enhancer. J Biol Chem 269(2):1323–1331PubMedGoogle Scholar
  270. Nusinzon I, Horvath CM (2005) Histone deacetylases as transcriptional activators? Role reversal in inducible gene regulation. Sci STKE 2005(296):re11PubMedCrossRefGoogle Scholar
  271. O’Brien RM, Noisin EL, Suwanichkul A, Yamasaki T, Lucas PC, Wang JC, Powell DR, Granner DK (1995) Hepatic nuclear factor 3- and hormone-regulated expression of the phosphoenolpyruvate carboxykinase and insulin-like growth factor-binding protein 1 genes. Mol Cell Biol 15(3):1747–1758PubMedGoogle Scholar
  272. Ocker M (2010) Deacetylase inhibitors - focus on non-histone targets and effects. World J Biol Chem 1(5):55–61PubMedCrossRefGoogle Scholar
  273. Odom DT, Zizlsperger N, Gordon DB, Bell GW, Rinaldi NJ, Murray HL, Volkert TL, Schreiber J, Rolfe PA, Gifford DK, Fraenkel E, Bell GI, Young RA (2004) Control of pancreas and liver gene expression by HNF transcription factors. Science 303(5662):1378–1381PubMedCrossRefGoogle Scholar
  274. Odom DT, Dowell RD, Jacobsen ES, Nekludova L, Rolfe PA, Danford TW, Gifford DK, Fraenkel E, Bell GI, Young RA (2006) Core transcriptional regulatory circuitry in human hepatocytes. Mol Syst Biol 2(2006):0017PubMedGoogle Scholar
  275. Ogino M, Nagata K, Miyata M, Yamazoe Y (1999) Hepatocyte nuclear factor 4-mediated activation of rat CYP3A1 gene and its modes of modulation by apolipoprotein AI regulatory protein I and v-ErbA-related protein 3. Arch Biochem Biophys 362(1):32–37PubMedCrossRefGoogle Scholar
  276. Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99(3):247–257PubMedCrossRefGoogle Scholar
  277. Olaharski AJ, Ji Z, Woo JY, Lim S, Hubbard AE, Zhang L, Smith MT (2006) The histone deacetylase inhibitor trichostatin a has genotoxic effects in human lymphoblasts in vitro. Toxicol Sci 93(2):341–347. doi:10.1093/toxsci/kfl068 PubMedCrossRefGoogle Scholar
  278. Otsuka H (2010) Nanofabrication of nonfouling surfaces for micropatterning of cell and microtissue. Molecules 15(8):5525–5546PubMedCrossRefGoogle Scholar
  279. Ourlin JC, Jounaidi Y, Maurel P, Vilarem MJ (1997) Role of the liver-enriched transcription factors C/EBP alpha and DBP in the expression of human CYP3A4 and CYP3A7. J Hepatol 26 Suppl 2:54–62PubMedCrossRefGoogle Scholar
  280. Padgham CR, Boyle CC, Wang XJ, Raleigh SM, Wright MC, Paine AJ (1993) Alteration of transcription factor mRNAs during the isolation and culture of rat hepatocytes suggests the activation of a proliferative mode underlies their de-differentiation. Biochem Biophys Res Commun 197(2):599–605PubMedCrossRefGoogle Scholar
  281. Page JL, Johnson MC, Olsavsky KM, Strom SC, Zarbl H, Omiecinski CJ (2007) Gene expression profiling of extracellular matrix as an effector of human hepatocyte phenotype in primary cell culture. Toxicol Sci 97(2):384–397PubMedCrossRefGoogle Scholar
  282. Paine AJ, Andreakos E (2004) Activation of signalling pathways during hepatocyte isolation: relevance to toxicology in vitro. Toxicol In Vitro 18(2):187–193PubMedCrossRefGoogle Scholar
  283. Papeleu P, Elaut G, Rogiers V, Vanhaecke T (2002) Cell cultures as in vitro tools for biotransformation studies. In: Recent research developments in drug. Transworld Research Network, KeralaGoogle Scholar
  284. Papeleu P, Loyer P, Vanhaecke T, Elaut G, Geerts A, Guguen-Guillouzo C, Rogiers V (2003) Trichostatin A induces differential cell cycle arrests but does not induce apoptosis in primary cultures of mitogen-stimulated rat hepatocytes. J Hepatol 39(3):374–382PubMedCrossRefGoogle Scholar
  285. Papeleu P, Loyer P, Vanhaecke T, Henkens T, Elaut G, Guguen-Guillouzo C, Rogiers V (2004) Proliferation of epidermal growth factor-stimulated hepatocytes in a hormonally defined serum-free medium. ATLA 32:57–64Google Scholar
  286. Papeleu P, Vanhaecke T, Henkens T, Elaut G, Vinken M, Snykers S, Rogiers V (2006a) Isolation of rat hepatocytes. Methods Mol Biol 320:229–237PubMedGoogle Scholar
  287. Papeleu P, Vanhaecke T, Rogiers V (2006b) Histone deacetylase inhibition: a differentiation therapy for cultured primary hepatocytes? Curr Enzym Inhib 2:91–104CrossRefGoogle Scholar
  288. Papeleu P, Wullaert A, Elaut G, Henkens T, Vinken M, Laus G, Tourwe D, Beyaert R, Rogiers V, Vanhaecke T (2007) Inhibition of NF-kappaB activation by the histone deacetylase inhibitor 4-Me2 N-BAVAH induces an early G1 cell cycle arrest in primary hepatocytes. Cell Prolif 40(5):640–655PubMedCrossRefGoogle Scholar
  289. Park Y, Kemper B (1996) The CYP2B1 proximal promoter contains a functional C/EBP regulatory element. DNA Cell Biol 15(8):693–701PubMedCrossRefGoogle Scholar
  290. Park SH, Waxman DJ (2001) Inhibitory cross-talk between STAT5b and liver nuclear factor HNF3beta: impact on the regulation of growth hormone pulse-stimulated, male-specific liver cytochrome P-450 gene expression. J Biol Chem 276(46):43031–43039PubMedCrossRefGoogle Scholar
  291. Park EA, Roesler WJ, Liu J, Klemm DJ, Gurney AL, Thatcher JD, Shuman J, Friedman A, Hanson RW (1990) The role of the CCAAT/enhancer-binding protein in the transcriptional regulation of the gene for phosphoenolpyruvate carboxykinase (GTP). Mol Cell Biol 10(12):6264–6272PubMedGoogle Scholar
  292. Park BK, Boobis A, Clarke S, Goldring CE, Jones D, Kenna JG, Lambert C, Laverty HG, Naisbitt DJ, Nelson S, Nicoll-Griffith DA, Obach RS, Routledge P, Smith DA, Tweedie DJ, Vermeulen N, Williams DP, Wilson ID, Baillie TA (2011a) Managing the challenge of chemically reactive metabolites in drug development. Nat Rev Drug Discov 10(4):292–306PubMedCrossRefGoogle Scholar
  293. Park BK, Laverty H, Srivastava A, Antoine DJ, Naisbitt D, Williams DP (2011b) Drug bioactivation and protein adduct formation in the pathogenesis of drug-induced toxicity. Chem Biol Interact 192(1–2):30–36PubMedCrossRefGoogle Scholar
  294. Park JK, Lee DH (2005) Bioartificial liver systems: current status and future perspective. J Biosci Bioeng 99(4):311–319Google Scholar
  295. Parviz F, Matullo C, Garrison WD, Savatski L, Adamson JW, Ning G, Kaestner KH, Rossi JM, Zaret KS, Duncan SA (2003) Hepatocyte nuclear factor 4alpha controls the development of a hepatic epithelium and liver morphogenesis. Nat Genet 34(3):292–296PubMedCrossRefGoogle Scholar
  296. Patra SK, Patra A, Rizzi F, Ghosh TC, Bettuzzi S (2008) Demethylation of (Cytosine-5-C-methyl) DNA and regulation of transcription in the epigenetic pathways of cancer development. Cancer Metastasis Rev 27(2):315–334PubMedCrossRefGoogle Scholar
  297. Piaz FD, Vassallo A, Rubio OC, Castellano S, Sbardella G, De Tommasi N (2011) Chemical biology of histone acetyltransferase natural compounds modulators. Mol Divers 15(2):401–416PubMedCrossRefGoogle Scholar
  298. Pimental RA, Liang B, Yee GK, Wilhelmsson A, Poellinger L, Paulson KE (1993) Dioxin receptor and C/EBP regulate the function of the glutathione S-transferase Ya gene xenobiotic response element. Mol Cell Biol 13(7):4365–4373PubMedGoogle Scholar
  299. Pitarque M, Rodriguez-Antona C, Oscarson M, Ingelman-Sundberg M (2005) Transcriptional regulation of the human CYP2A6 gene. J Pharmacol Exp Ther 313(2):814–822PubMedCrossRefGoogle Scholar
  300. Powers MJ, Janigian DM, Wack, KE, Baker CS, Beer Stolz D, Griffith, LG (2002) Functional behavior of primary rat liver cells in a three-dimensional perfused microarray bioreactor. Tissue Eng 8(3):499–513Google Scholar
  301. Poy MN, Spranger M, Stoffel M (2007) microRNAs and the regulation of glucose and lipid metabolism. Diabetes Obes Metab 9(Suppl 2):67–73PubMedCrossRefGoogle Scholar
  302. Prakash C, Vaz ADN (2009) Drug metabolism: significance and challanges. Nuclear receptors in drug metabolism. Wiley, New JerseyGoogle Scholar
  303. Pritchard JF, Jurima-Romet M, Reimer ML, Mortimer E, Rolfe B, Cayen MN (2003) Making better drugs: decision gates in non-clinical drug development. Nat Rev Drug Discov 2(7):542–553PubMedCrossRefGoogle Scholar
  304. Prot JM, Videau O, Brochot C, Legallais C, Benech H, Leclerc E (2011) A cocktail of metabolic probes demonstrates the relevance of primary human hepatocyte cultures in a microfluidic biochip for pharmaceutical drug screening. Int J Pharm 408(1–2):67–75PubMedCrossRefGoogle Scholar
  305. Puigserver P, Adelmant G, Wu Z, Fan M, Xu J, O’Malley B, Spiegelman BM (1999) Activation of PPARgamma coactivator-1 through transcription factor docking. Science 286(5443):1368–1371PubMedCrossRefGoogle Scholar
  306. Rajagopalan P, Shen CJ, Berthiaume F, Tilles AW, Toner M, Yarmush ML (2006) Polyelectrolyte nano-scaffolds for the design of layered cellular architectures. Tissue Eng 12(6):1553–1563PubMedCrossRefGoogle Scholar
  307. Ramadori G, Ramadori P (2010) Hepatocytes. Signaling pathways in liver diseases. Springer, BerlinGoogle Scholar
  308. Rappaport AM, Borowy ZJ, Lougheed WM, Lotto WN (1954) Subdivision of hexagonal liver lobules into a structural and functional unit; role in hepatic physiology and pathology. Anat Rec 119(1):11–33PubMedCrossRefGoogle Scholar
  309. Rausa F, Samadani U, Ye H, Lim L, Fletcher CF, Jenkins NA, Copeland NG, Costa RH (1997) The cut-homeodomain transcriptional activator HNF-6 is coexpressed with its target gene HNF-3 beta in the developing murine liver and pancreas. Dev Biol 192(2):228–246PubMedCrossRefGoogle Scholar
  310. Raymondjean M, Pichard AL, Gregori C, Ginot F, Kahn A (1991) Interplay of an original combination of factors: C/EBP, NFY, HNF3, and HNF1 in the rat aldolase B gene promoter. Nucleic Acids Res 19(22):6145–6153PubMedCrossRefGoogle Scholar
  311. Ren J, Singh BN, Huang Q, Li Z, Gao Y, Mishra P, Hwa YL, Li J, Dowdy SC, Jiang SW (2011) DNA hypermethylation as a chemotherapy target. Cell Signal 23(7):1082–1093PubMedCrossRefGoogle Scholar
  312. Rodrigues E, Vilarem MJ, Ribeiro V, Maurel P, Lechner MC (2003) Two CCAAT/enhancer binding protein sites in the cytochrome P4503A1 locus. Potential role in the glucocorticoid response. Eur J Biochem 270(3):556–564PubMedCrossRefGoogle Scholar
  313. Rodriguez-Antona C, Donato MT, Boobis A, Edwards RJ, Watts PS, Castell JV, Gomez-Lechon MJ (2002) Cytochrome P450 expression in human hepatocytes and hepatoma cell lines: molecular mechanisms that determine lower expression in cultured cells. Xenobiotica 32(6):505–520PubMedCrossRefGoogle Scholar
  314. Rodriguez-Antona C, Bort R, Jover R, Tindberg N, Ingelman-Sundberg M, Gomez-Lechon MJ, Castell JV (2003) Transcriptional regulation of human CYP3A4 basal expression by CCAAT enhancer-binding protein alpha and hepatocyte nuclear factor-3 gamma. Mol Pharmacol 63(5):1180–1189PubMedCrossRefGoogle Scholar
  315. Rogiers V, Akrawi M, Vercruysse A, Phillips IR, Shephard EA (1995) Effects of the anticonvulsant, valproate, on the expression of components of the cytochrome-P-450-mediated monooxygenase system and glutathione S-transferases. Eur J Biochem 231(2):337–343PubMedCrossRefGoogle Scholar
  316. Rojkind M, Novikoff PM, Greenwel P, Rubin J, Rojas-Valencia L, de Carvalho AC, Stockert R, Spray D, Hertzberg EL, Wolkoff AW (1995) Characterization and functional studies on rat liver fat-storing cell line and freshly isolated hepatocyte coculture system. Am J Pathol 146(6):1508–1520PubMedGoogle Scholar
  317. Rowe C, Goldring CE, Kitteringham NR, Jenkins RE, Lane BS, Sanderson C, Elliott V, Platt V, Metcalfe P, Park BK (2010) Network analysis of primary hepatocyte dedifferentiation using a shotgun proteomics approach. J Proteome Res 9(5):2658–2668PubMedCrossRefGoogle Scholar
  318. Russell WMS, Burch RL (1959) The principles of humane experimental technique. Methuen, LondonGoogle Scholar
  319. Saito Y, Liang G, Egger G, Friedman JM, Chuang JC, Coetzee GA, Jones PA (2006) Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 9(6):435–443PubMedCrossRefGoogle Scholar
  320. Samadani U, Costa RH (1996) The transcriptional activator hepatocyte nuclear factor 6 regulates liver gene expression. Mol Cell Biol 16(11):6273–6284PubMedGoogle Scholar
  321. Sandman K, Reeve JN (2006) Archaeal histones and the origin of the histone fold. Curr Opin Microbiol 9(5):520–525PubMedCrossRefGoogle Scholar
  322. Santos-Rosa H, Caldas C (2005) Chromatin modifier enzymes, the histone code and cancer. Eur J Cancer 41(16):2381–2402PubMedCrossRefGoogle Scholar
  323. Sasaki Y, Takahashi Y, Nakayama K, Kamataki T (1999) Cooperative regulation of CYP2C12 gene expression by STAT5 and liver-specific factors in female rats. J Biol Chem 274(52):37117–37124PubMedCrossRefGoogle Scholar
  324. Schaefer M, Lyko F (2010) Solving the Dnmt2 enigma. Chromosoma 119(1):35–40PubMedCrossRefGoogle Scholar
  325. Schaeffer E, Guillou F, Part D, Zakin MM (1993) A different combination of transcription factors modulates the expression of the human transferrin promoter in liver and Sertoli cells. J Biol Chem 268(31):23399–23408PubMedGoogle Scholar
  326. Scheving LA, Stevenson MC, Zhang X, Russell WE (2008) Cultured rat hepatocytes upregulate Akt and ERK in an ErbB-2-dependent manner. Am J Physiol Gastrointest Liver Physiol 295(2):G322–G331. doi:10.1152/ajpgi.00597.2007 PubMedCrossRefGoogle Scholar
  327. Schrem H, Klempnauer J, Borlak J (2002) Liver-enriched transcription factors in liver function and development. Part I: the hepatocyte nuclear factor network and liver-specific gene expression. Pharmacol Rev 54(1):129–158PubMedCrossRefGoogle Scholar
  328. Schuster D, Laggner C, Langer T (2005) Why drugs fail—a study on side effects in new chemical entities. Curr Pharm Des 11(27):3545–3559PubMedCrossRefGoogle Scholar
  329. Schutte M, Fox B, Baradez MO, Devonshire A, Minguez J, Bokhari M, Przyborski S, Marshall D (2011) Rat primary hepatocytes show enhanced performance and sensitivity to acetaminophen during three-dimensional culture on a polystyrene scaffold designed for routine use. Assay Drug Dev Technol 9(5):475–486Google Scholar
  330. Seglen PO (1976) Preparation of isolated rat liver cells. Methods Cell Biol 13:29–83PubMedCrossRefGoogle Scholar
  331. Segre CV, Chiocca S (2011) Regulating the regulators: the post-translational code of class I HDAC1 and HDAC2. J Biomed Biotechnol 2011:690848PubMedCrossRefGoogle Scholar
  332. Shackel NA, Gorrell MD, McCaughan GW (2002) Gene array analysis and the liver. Hepatology 36(6):1313–1325PubMedGoogle Scholar
  333. Shruti K, Shrey K, Vibha R (2011) Micro RNAs: tiny sequences with enormous potential. Biochem Biophys Res Commun 407(3):445–449PubMedCrossRefGoogle Scholar
  334. Sidhu JS, Omiecinski CJ (1995) Modulation of xenobiotic-inducible cytochrome P450 gene expression by dexamethasone in primary rat hepatocytes. Pharmacogenetics 5(1):24–36PubMedCrossRefGoogle Scholar
  335. Sidhu JS, Liu F, Omiecinski CJ (2004) Phenobarbital responsiveness as a uniquely sensitive indicator of hepatocyte differentiation status: requirement of dexamethasone and extracellular matrix in establishing the functional integrity of cultured primary rat hepatocytes. Exp Cell Res 292(2):252–264. doi:S0014482703004701 PubMedCrossRefGoogle Scholar
  336. Sinclair EM, Yusta B, Streutker C, Baggio LL, Koehler J, Charron MJ, Drucker DJ (2008) Glucagon receptor signaling is essential for control of murine hepatocyte survival. Gastroenterology 135(6):2096–2106PubMedCrossRefGoogle Scholar
  337. Skett P (1994) Problems in using isolated and cultured hepatocytes for xenobiotic metabolism/metabolism-based toxicity testing-solutions? Toxicol In Vitro 8(3):491–504PubMedCrossRefGoogle Scholar
  338. Skett P, Bayliss M (1996) Time for a consistent approach to preparing and culturing hepatocytes? Xenobiotica 26(1):1–7PubMedCrossRefGoogle Scholar
  339. Sladek FM, Zhong WM, Lai E, Darnell JE Jr (1990) Liver-enriched transcription factor HNF-4 is a novel member of the steroid hormone receptor superfamily. Genes Dev 4(12B):2353–2365PubMedCrossRefGoogle Scholar
  340. Smith CL (2008) A shifting paradigm: histone deacetylases and transcriptional activation. BioEssays 30(1):15–24PubMedCrossRefGoogle Scholar
  341. Snykers S, Vanhaecke T, Papeleu P, Luttun A, Jiang Y, Vander Heyden Y, Verfaillie C, Rogiers V (2006) Sequential exposure to cytokines reflecting embryogenesis: the key for in vitro differentiation of adult bone marrow stem cells into functional hepatocyte-like cells. Toxicol Sci 94(2):330–341 (discussion 235–339)PubMedCrossRefGoogle Scholar
  342. Snykers S, Henkens T, De Rop E, Vinken M, Fraczek J, De Kock J, De Prins E, Geerts A, Rogiers V, Vanhaecke T (2009) Role of epigenetics in liver-specific gene transcription, hepatocyte differentiation and stem cell reprogrammation. J Hepatol 51(1):187–211PubMedCrossRefGoogle Scholar
  343. Song CS, Jung MH, Kim SC, Hassan T, Roy AK, Chatterjee B (1998) Tissue-specific and androgen-repressible regulation of the rat dehydroepiandrosterone sulfotransferase gene promoter. J Biol Chem 273(34):21856–21866PubMedCrossRefGoogle Scholar
  344. Song G, Sharma AD, Roll GR, Ng R, Lee AY, Blelloch RH, Frandsen NM, Willenbring H (2010) MicroRNAs control hepatocyte proliferation during liver regeneration. Hepatology 51(5):1735–1743PubMedCrossRefGoogle Scholar
  345. Soutoglou E, Viollet B, Vaxillaire M, Yaniv M, Pontoglio M, Talianidis I (2001) Transcription factor-dependent regulation of CBP and P/CAF histone acetyltransferase activity. EMBO J 20(8):1984–1992PubMedCrossRefGoogle Scholar
  346. Spath GF, Weiss MC (1998) Hepatocyte nuclear factor 4 provokes expression of epithelial marker genes, acting as a morphogen in dedifferentiated hepatoma cells. J Cell Biol 140(4):935–946PubMedCrossRefGoogle Scholar
  347. Spek CA, Lannoy VJ, Lemaigre FP, Rousseau GG, Bertina RM, Reitsma PH (1998) Type I protein C deficiency caused by disruption of a hepatocyte nuclear factor (HNF)-6/HNF-1 binding site in the human protein C gene promoter. J Biol Chem 273(17):10168–10173PubMedCrossRefGoogle Scholar
  348. Stewart MJ, Dipple KM, Estonius M, Nakshatri H, Everett LM, Crabb DW (1998) Binding and activation of the human aldehyde dehydrogenase 2 promoter by hepatocyte nuclear factor 4. Biochim Biophys Acta 1399(2–3):181–186PubMedGoogle Scholar
  349. Stoker M, Gherardi E, Perryman M, Gray J (1987) Scatter factor is a fibroblast-derived modulator of epithelial cell mobility. Nature 327(6119):239–242PubMedCrossRefGoogle Scholar
  350. Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403(6765):41–45PubMedCrossRefGoogle Scholar
  351. Stresemann C, Lyko F (2008) Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine. Int J Cancer 123(1):8–13PubMedCrossRefGoogle Scholar
  352. Su T, Waxman DJ (2004) Impact of dimethyl sulfoxide on expression of nuclear receptors and drug-inducible cytochromes P450 in primary rat hepatocytes. Arch Biochem Biophys 424(2):226–234PubMedCrossRefGoogle Scholar
  353. Sugimachi K, Sosef MN, Baust JM, Fowler A, Tompkins RG, Toner M (2004) Long-term function of cryopreserved rat hepatocytes in a coculture system. Cell Transplant 13(2):187–195PubMedGoogle Scholar
  354. Sunman JA, Hawke RL, LeCluyse EL, Kashuba AD (2004) Kupffer cell-mediated IL-2 suppression of CYP3A activity in human hepatocytes. Drug Metab Dispos 32(3):359–363PubMedCrossRefGoogle Scholar
  355. Szyf M (2009) Epigenetics, DNA methylation, and chromatin modifying drugs. Annu Rev Pharmacol Toxicol 49:243–263PubMedCrossRefGoogle Scholar
  356. Szyf M (2010) DNA methylation and demethylation probed by small molecules. Biochim Biophys Acta 1799(10–12):750–759PubMedGoogle Scholar
  357. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676PubMedCrossRefGoogle Scholar
  358. Tambaro FP, Dell’Aversana C, Carafa V, Nebbioso A, Radic B, Ferrara F, Altucci F (2010) Histoene deacetylase inhibitors: clinical implications for hemataological malignances. Clin Epigenetics 1:25–44PubMedCrossRefGoogle Scholar
  359. Tanaka Y, Sato K, Yamato M, Okano T, Kitamori T (2006) Cell culture and life support system for microbioreactor and bioassay. J Chromatogr A 1111(2):233–237Google Scholar
  360. Tirona RG, Lee W, Leake BF, Lan LB, Cline CB, Lamba V, Parviz F, Duncan SA, Inoue Y, Gonzalez FJ, Schuetz EG, Kim RB (2003) The orphan nuclear receptor HNF4alpha determines PXR- and CAR-mediated xenobiotic induction of CYP3A4. Nat Med 9(2):220–224PubMedCrossRefGoogle Scholar
  361. Tollet P, Lahuna O, Ahlgren R, Mode A, Gustafsson JA (1995) CCAAT/enhancer-binding protein-alpha-dependent transactivation of CYP2C12 in rat hepatocytes. Mol Endocrinol 9(12):1771–1781PubMedCrossRefGoogle Scholar
  362. Tomomura A, Sawada N, Sattler GL, Kleinman HK, Pitot HC (1987) The control of DNA synthesis in primary cultures of hepatocytes from adult and young rats: interactions of extracellular matrix components, epidermal growth factor, and the cell cycle. J Cell Physiol 130(2):221–227. doi:10.1002/jcp.1041300208 PubMedCrossRefGoogle Scholar
  363. Torres-Padilla ME, Sladek FM, Weiss MC (2002) Developmentally regulated N-terminal variants of the nuclear receptor hepatocyte nuclear factor 4alpha mediate multiple interactions through coactivator and corepressor-histone deacetylase complexes. J Biol Chem 277(47):44677–44687PubMedCrossRefGoogle Scholar
  364. Tronche F, Rollier A, Herbomel P, Bach I, Cereghini S, Weiss M, Yaniv M (1990) Anatomy of the rat albumin promoter. Mol Biol Med 7(2):173–185PubMedGoogle Scholar
  365. Tsaioun K, Jacewicz M (2009) De-risking drug discovery with ADDME—avoiding drug development mistakes early. Altern Lab Anim 37(Suppl 1):47–55PubMedGoogle Scholar
  366. Tsaioun K, Bottlaender M, Mabondzo A (2009) ADDME—avoiding drug development mistakes early: central nervous system drug discovery perspective. BMC Neurol 9(Suppl 1):S1PubMedCrossRefGoogle Scholar
  367. Tsutsumi K, Ito K, Ishikawa K (1989) Developmental appearance of transcription factors that regulate liver-specific expression of the aldolase B gene. Mol Cell Biol 9(11):4923–4931PubMedGoogle Scholar
  368. Turner R, Lozoya O, Wang Y, Cardinale V, Gaudio E, Alpini G, Mendel G, Wauthier E, Barbier C, Alvaro D, Reid LM (2011) Human hepatic stem cell and maturational liver lineage biology. Hepatology 53(3):1035–1045PubMedCrossRefGoogle Scholar
  369. Tuschl G, Mueller SO (2006) Effects of cell culture conditions on primary rat hepatocytes-cell morphology and differential gene expression. Toxicology 218(2–3):205–215PubMedCrossRefGoogle Scholar
  370. Tuschl G, Hrach J, Hewitt PG, Mueller SO (2007) Application of short- and long-term hepatocyte cultures to predict toxicities. In: Sahu SC (ed) Hepatotoxicty: from genomics to in vitro and in vivo models. Wiley, LondonGoogle Scholar
  371. Tuschl G, Hrach J, Walter Y, Hewitt PG, Mueller SO (2009) Serum-free collagen sandwich cultures of adult rat hepatocytes maintain liver-like properties long term: a valuable model for in vitro toxicity and drug-drug interaction studies. Chem Biol Interact 181(1):124–137PubMedCrossRefGoogle Scholar
  372. Ueno T, Gonzalez FJ (1990) Transcriptional control of the rat hepatic CYP2E1 gene. Mol Cell Biol 10(9):4495–4505PubMedGoogle Scholar
  373. Ulvila J, Arpiainen S, Pelkonen O, Aida K, Sueyoshi T, Negishi M, Hakkola J (2004) Regulation of Cyp2a5 transcription in mouse primary hepatocytes: roles of hepatocyte nuclear factor 4 and nuclear factor I. Biochem J 381(Pt 3):887–894PubMedGoogle Scholar
  374. Utesch D, Molitor E, Platt KL, Oesch F (1991) Differential stabilization of cytochrome P-450 isoenzymes in primary cultures of adult rat liver parenchymal cells. In Vitro Cell Dev Biol 27A(11):858–863PubMedCrossRefGoogle Scholar
  375. Vaissiere T, Sawan C, Herceg Z (2008) Epigenetic interplay between histone modifications and DNA methylation in gene silencing. Mutat Res 659(1–2):40–48PubMedGoogle Scholar
  376. van de Bovenkamp M, Groothuis GM, Draaisma AL, Merema MT, Bezuijen JI, van Gils MJ, Meijer DK, Friedman SL, Olinga P (2005) Precision-cut liver slices as a new model to study toxicity-induced hepatic stellate cell activation in a physiologic milieu. Toxicol Sci 85(1):632–638PubMedCrossRefGoogle Scholar
  377. van de Bovenkamp M, Groothuis GM, Meijer DK, Olinga P (2008) Liver slices as a model to study fibrogenesis and test the effects of anti-fibrotic drugs on fibrogenic cells in human liver. Toxicol In Vitro 22(3):771–778PubMedCrossRefGoogle Scholar
  378. Van Lint C, Emiliani S, Verdin E (1996) The expression of a small fraction of cellular genes is changed in response to histone hyperacetylation. Gene Expr 5(4–5):245–253PubMedGoogle Scholar
  379. Van Ommeslaeghe K, Elaut G, Brecx V, Papeleu P, Iterbeke K, Geerlings P, Tourwe D, Rogiers V (2003) Amide analogues of TSA: synthesis, binding mode analysis and HDAC inhibition. Bioorg Med Chem Lett 13(11):1861–1864PubMedCrossRefGoogle Scholar
  380. Vandenberghe Y, Foriers A, Rogiers V, Vercruysse A (1990) Changes in expression and “de novo” synthesis of glutathione S-transferase subunits in cultured adult rat hepatocytes. Biochem Pharmacol 39(4):685–690PubMedCrossRefGoogle Scholar
  381. Vandenberghe Y, Tee L, Rogiers V, Yeoh G (1992) Transcriptional- and post-transcriptional-dependent regulation of glutathione S-transferase expression in rat hepatocytes as a function of culture conditions. FEBS Lett 313(2):155–159PubMedCrossRefGoogle Scholar
  382. Vanhaecke T, Henkens T, Kass GE, Rogiers V (2004) Effect of the histone deacetylase inhibitor trichostatin A on spontaneous apoptosis in various types of adult rat hepatocyte cultures. Biochem Pharmacol 68(4):753–760PubMedCrossRefGoogle Scholar
  383. Villa P, Hockin LJ, Paine AJ (1980) The relationship between the ability of pyridine and substituted pyridines to maintain cytochrome P-450 and inhibit protein synthesis in rat hepatocyte cultures. Biochem Pharmacol 29(12):1773–1777. doi:0006-2952(80)90139-2 PubMedCrossRefGoogle Scholar
  384. Villar-Garea A, Fraga MF, Espada J, Esteller M (2003) Procaine is a DNA-demethylating agent with growth-inhibitory effects in human cancer cells. Cancer Res 63(16):4984–4989PubMedGoogle Scholar
  385. Vinci B, Duret C, Klieber S, Gerbal-Chaloin S, Sa-Cunha A, Laporte S, Suc B, Maurel P, Ahluwalia A, Daujat-Chavanieu M (2011) Modular bioreactor for primary human hepatocyte culture: medium flow stimulates expression and activity of detoxification genes. Biotechnol J 6(5):554–564PubMedCrossRefGoogle Scholar
  386. Vind C, Dich J, Grunnet N (1989) Effects of cytochrome P450-inducing agents on the monooxygenation of testosterone in long-term cultures of hepatocytes from male and female rats. Arch Biochem Biophys 275(1):140–150. doi:0003-9861(89)90358-5 PubMedCrossRefGoogle Scholar
  387. Vinken M, Henkens T, Vanhaecke T, Papeleu P, Geerts A, Van Rossen E, Chipman JK, Meda P, Rogiers V (2006a) Trichostatin a enhances gap junctional intercellular communication in primary cultures of adult rat hepatocytes. Toxicol Sci 91(2):484–492PubMedCrossRefGoogle Scholar
  388. Vinken M, Papeleu P, Snykers S, De Rop E, Henkens T, Chipman JK, Rogiers V, Vanhaecke T (2006b) Involvement of cell junctions in hepatocyte culture functionality. Crit Rev Toxicol 36(4):299–318PubMedCrossRefGoogle Scholar
  389. Vinken M, Henkens T, Snykers S, Lukaszuk A, Tourwe D, Rogiers V, Vanhaecke T (2007) The novel histone deacetylase inhibitor 4-Me2 N-BAVAH differentially affects cell junctions between primary hepatocytes. Toxicology 236(1–2):92–102PubMedCrossRefGoogle Scholar
  390. Vinken M, Henkens T, De Rop E, Fraczek J, Vanhaecke T, Rogiers V (2008) Biology and pathobiology of gap junctional channels in hepatocytes. Hepatology 47(3):1077–1088PubMedCrossRefGoogle Scholar
  391. Wade DP, Lindahl GE, Lawn RM (1994) Apolipoprotein(a) gene transcription is regulated by liver-enriched trans-acting factor hepatocyte nuclear factor 1 alpha. J Biol Chem 269(31):19757–19765PubMedGoogle Scholar
  392. Wahid F, Shehzad A, Khan T, Kim YY (2010) MicroRNAs: synthesis, mechanism, function, and recent clinical trials. Biochim Biophys Acta 1803(11):1231–1243PubMedCrossRefGoogle Scholar
  393. Wang JC, Stafford JM, Granner DK (1998) SRC-1 and GRIP1 coactivate transcription with hepatocyte nuclear factor 4. J Biol Chem 273(47):30847–30850PubMedCrossRefGoogle Scholar
  394. Wang K, Shindoh H, Inoue T, Horii I (2002) Advantages of in vitro cytotoxicity testing by using primary rat hepatocytes in comparison with established cell lines. J Toxicol Sci 27(3):229–237PubMedCrossRefGoogle Scholar
  395. Wang M, Tan Y, Costa RH, Holterman AX (2004) In vivo regulation of murine CYP7A1 by HNF-6: a novel mechanism for diminished CYP7A1 expression in biliary obstruction. Hepatology 40(3):600–608PubMedCrossRefGoogle Scholar
  396. Wang J, Zong C, Shi D, Wang W, Shen D, Liu L, Tong X, Zheng Q, Gao C (2011) Hepatogenic engineering from human bone marrow mesenchymal stem cells in porous polylactic glycolic acid scaffolds under perfusion culture. J Tissue Eng Regen Med 6(1):29–39Google Scholar
  397. Wilberding JA, Castellino FJ (2000) Characterization of the murine coagulation factor X promoter. Thromb Haemost 84(6):1031–1038PubMedGoogle Scholar
  398. Wilkening S, Bader A (2003) Influence of culture time on the expression of drug-metabolizing enzymes in primary human hepatocytes and hepatoma cell line HepG2. J Biochem Mol Toxicol 17(4):207–213PubMedCrossRefGoogle Scholar
  399. Wilkening S, Stahl F, Bader A (2003) Comparison of primary human hepatocytes and hepatoma cell line Hepg2 with regard to their biotransformation properties. Drug Metab Dispos 31(8):1035–1042PubMedCrossRefGoogle Scholar
  400. Williams CM, Mehta G, Peyton SR, Zeiger AS, Van Vliet KJ, Griffith LG (2011) Autocrine-controlled formation and function of tissue-like aggregates by primary hepatocytes in micropatterned hydrogel arrays. Tissue Eng Part A 17(7–8):1055–1068PubMedCrossRefGoogle Scholar
  401. Wiwi CA, Waxman DJ (2005) Role of hepatocyte nuclear factors in transcriptional regulation of male-specific CYP2A2. J Biol Chem 280(5):3259–3268PubMedCrossRefGoogle Scholar
  402. Wortham M, Czerwinski M, He L, Parkinson A, Wan YJ (2007) Expression of constitutive androstane receptor, hepatic nuclear factor 4 alpha, and P450 oxidoreductase genes determines interindividual variability in basal expression and activity of a broad scope of xenobiotic metabolism genes in the human liver. Drug Metab Dispos 35(9):1700–1710PubMedCrossRefGoogle Scholar
  403. Wu J, Mari-Buye N, Muinos TF, Borros S, Favia P, Semino CE (2010) Nanometric self-assembling peptide layers maintain adult hepatocyte phenotype in sandwich cultures. J Nanobiotechnol 8:29CrossRefGoogle Scholar
  404. Xu WS, Parmigiani RB, Marks PA (2007) Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene 26(37):5541–5552PubMedCrossRefGoogle Scholar
  405. Yamada S, Otto PS, Kennedy DL, Whayne TF Jr (1980) The effects of dexamethasone on metabolic activity of hepatocytes in primary monolayer culture. In Vitro 16(7):559–570PubMedCrossRefGoogle Scholar
  406. Yamashita Y, Shimada M, Harimoto N, Rikimaru T, Shirabe K, Tanaka S, Sugimachi K (2003) Histone deacetylase inhibitor trichostatin A induces cell-cycle arrest/apoptosis and hepatocyte differentiation in human hepatoma cells. Int J Cancer 103(5):572–576PubMedCrossRefGoogle Scholar
  407. Yamashita Y, Shimada M, Harimoto N, Tanaka S, Shirabe K, Ijima H, Nakazawa K, Fukuda J, Funatsu K, Maehara Y (2004) cDNA microarray analysis in hepatocyte differentiation in Huh 7 cells. Cell Transplant 13(7–8):793–799PubMedCrossRefGoogle Scholar
  408. Yang XJ, Seto Ey (2007) HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention. Oncogene 26(37):5310–5318PubMedCrossRefGoogle Scholar
  409. Yanuka-Kashles O, Cohen H, Trus M, Aran A, Benvenisty N, Reshef L (1994) Transcriptional regulation of the phosphoenolpyruvate carboxykinase gene by cooperation between hepatic nuclear factors. Mol Cell Biol 14(11):7124–7133PubMedGoogle Scholar
  410. Yao YL, Yang WM (2011) Beyond histone and deacetylase: an overview of cytoplasmic histone deacetylases and their nonhistone substrates. J Biomed Biotechnol 2011:146493PubMedCrossRefGoogle Scholar
  411. Yokomori N, Nishio K, Aida K, Negishi M (1997) Transcriptional regulation by HNF-4 of the steroid 15alpha-hydroxylase P450 (Cyp2a–4) gene in mouse liver. J Steroid Biochem Mol Biol 62(4):307–314PubMedCrossRefGoogle Scholar
  412. Yoo EJ, Lee BM (2005) Comparative mutagenicity of apicidin and apicidin derivatives (SD-0203 and SD-2007), histone deacetylase inhibitors. J Toxicol Environ Health A 68(23–24):2097–2109. doi:10.1080/15287390500182511 PubMedGoogle Scholar
  413. Yoshida E, Aratani S, Itou H, Miyagishi M, Takiguchi M, Osumu T, Murakami K, Fukamizu A (1997) Functional association between CBP and HNF4 in trans-activation. Biochem Biophys Res Commun 241(3):664–669PubMedCrossRefGoogle Scholar
  414. Yoshida Y, Hughes DE, Rausa FM III, Kim IM, Tan Y, Darlington GJ, Costa RH (2006) C/EBPalpha and HNF6 protein complex formation stimulates HNF6-dependent transcription by CBP coactivator recruitment in HepG2 cells. Hepatology 43(2):276–286PubMedCrossRefGoogle Scholar
  415. Zhang Y, He Y, Bharadwaj S, Hammam N, Carnagey K, Myers R, Atala A, Van Dyke M (2009) Tissue-specific extracellular matrix coatings for the promotion of cell proliferation and maintenance of cell phenotype. Biomaterials 30(23–24):4021–4028PubMedCrossRefGoogle Scholar
  416. Zuo Y, Qiang L, Farmer SR (2006) Activation of CCAAT/enhancer-binding protein (C/EBP) alpha expression by C/EBP beta during adipogenesis requires a peroxisome proliferator-activated receptor-gamma-associated repression of HDAC1 at the C/ebp alpha gene promoter. J Biol Chem 281(12):7960–7967PubMedCrossRefGoogle Scholar
  417. Zvibel I, Fiorino AS, Brill S, Reid LM (1998) Phenotypic characterization of rat hepatoma cell lines and lineage-specific regulation of gene expression by differentiation agents. Differentiation 63(4):215–223PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • J. Fraczek
    • 1
  • J. Bolleyn
    • 1
  • T. Vanhaecke
    • 1
  • V. Rogiers
    • 1
  • M. Vinken
    • 1
  1. 1.Department of Toxicology, Faculty of Medicine and Pharmacy, Centre for Pharmaceutical ResearchVrije Universiteit BrusselBrusselsBelgium

Personalised recommendations