Skip to main content

Advertisement

Log in

Magnesium sulfate treatment against sarin poisoning: dissociation between overt convulsions and recorded cortical seizure activity

  • Organ Toxicity and Mechanisms
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Sarin, a potent organophosphate cholinesterase inhibitor, induces an array of toxic effects including convulsions. Many antidotal treatments contain anticonvulsants to block seizure activity and the ensuing brain damage. Magnesium sulfate (MGS) is used to suppress eclamptic seizures in pregnant women with hypertension and was shown to block kainate-induced convulsions. Magnesium sulfate was evaluated herein as an anticonvulsant against sarin poisoning and its efficacy was compared with the potent anticonvulsants midazolam (MDZ) and caramiphen (CRM). Rats were exposed to a convulsant dose of sarin (96 μg/kg, im) and 1 min later treated with the oxime TMB4 and atropine to increase survival. Five minutes after initiation of convulsions, MGS, CRM, or MDZ were administered. Attenuation of tonic–clonic convulsions was observed following all these treatments. However, radio-telemetric electro-corticography (ECoG) monitoring demonstrated sustained seizure activity in MGS-injected animals while this activity was completely blocked by MDZ and CRM. This disrupted brain activity was associated with marked increase in brain translocator protein levels, a marker for brain damage, measured 1 week following exposure. Additionally, histopathological analyses of MGS-treated group showed typical sarin-induced brain injury excluding the hippocampus that was partially protected. Our results clearly show that MGS demonstrated misleading features as an anticonvulsant against sarin-induced seizures. This stems from the dissociation observed between overt convulsions and seizure activity. Thus, the presence or absence of motor convulsions may be an unreliable indicator in the assessment of clinical status and in directing adequate antidotal treatments following exposure to nerve agents in battle field or terror attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ACh:

Acetylcholine

AChE:

Acetylcholinesterase

CNS:

Central nervous system

CRM:

Caramiphen

ECoG:

Electrocorticogram

GFAP:

Glial fibrillary acidic protein

Glu:

Glutamate

MDZ:

Midazolam

MGS:

Magnesium sulfate

MAP-2:

Microtubule-associated protein 2

NeuN:

Neuronal nuclear antigen

NMDA:

N-Methyl-D-Aspartate

OP:

Organophosphorous

TA:

TMB4 + Atropine

TSPO:

Translocator protein

References

  • Baille V, Dorandeu F, Carpentier P, Bizot JC, Filliat P, Four E, Denis J, Lallement G (2001) Acute exposure to a low or mild dose of soman: biochemical, behavioral and histopathological effects. Pharmacol Biochem Behav 69:561–569

    Article  PubMed  CAS  Google Scholar 

  • Baille-Le Crom V, Collombet JM, Carpentier P, Brochier G, Burckhart MF, Foquin A, Pernot-Marino I, Rondouin G, Lallement G (1995) Early regional changes of GFAP mRNA in rat hippocampus and dentate gyrus during soman-induced seizures. NeuroReport 7:365–369

    PubMed  CAS  Google Scholar 

  • Balali-Mood M, Balali-Mood K (2008) Neurotoxic disorders of organophosphorus compounds and their managements. Arch Iran Med 11:65–89

    PubMed  CAS  Google Scholar 

  • Ballough GP, Cann FJ, Smith CD, Forster JS, Kling CE, Filbert MG (1998) GM1 monosialoganglioside pretreatment protects against soman-induced seizure-related brain damage. Mol Chem Neuropathol 34:1–23

    Article  PubMed  CAS  Google Scholar 

  • Benavides J, Fage D, Carter C, Scatton B (1987) Peripheral type benzodiazepine binding sites are a sensitive indirect index of neuronal damage. Brain Res 421:167–172

    Article  PubMed  CAS  Google Scholar 

  • Benavides J, Dubois A, Scatton B (2001) Peripheral type benzodiazepine binding sites as a tool for the detection and quantification of CNS injury. Curr Protoc Neurosci Chapter 7: Unit 7 16

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Chapman S, Kadar T, Gilat E (2006) Seizure duration following sarin exposure affects neuro-inflammatory markers in the rat brain. Neurotoxicology 27:277–283

    Article  PubMed  CAS  Google Scholar 

  • Cotton DB, Hallak M, Janusz C, Irtenkauf SM, Berman RF (1993) Central anticonvulsant effects of magnesium sulphate on N-methyl-D-aspartate-induced seizures. Am J Obstet Gynecol 168:974–978

    PubMed  CAS  Google Scholar 

  • Cox JA, Lysko PG, Henneberry RC (1989) Excitatory amino acid neurotoxicity at the N-methyl-D-aspartate receptor in cultured neurons: role of the voltage-dependent magnesium block. Brain Res 499:267–272

    Article  PubMed  CAS  Google Scholar 

  • Dingledine R, McBain CJ, McNamara JO (1990) Excitatory amino acid receptors in epilepsy. Trends Pharmacol Sci 11:334–338

    Article  PubMed  CAS  Google Scholar 

  • Donaldson JO (1986) Does magnesium sulphate treat eclamptic convulsions? Clin Neuropharmacol 9:37–45

    Article  PubMed  CAS  Google Scholar 

  • Euser AG, Cipolla MJ (2009) Magnesium sulphate for the treatment of eclampsia: a brief review. Stroke 40:1169–1175

    Article  PubMed  CAS  Google Scholar 

  • Filbert MG, Forster JS, Smith CD, Ballough GP (1999) Neuroprotective effects of HU-211 on brain damage resulting from soman-induced seizures. Ann N Y Acad Sci 890:505–514

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein A, Kunis G, Berkutzki T, Ronen A, Krivoy A, Yoles E, Last D, Mardor Y, Van Shura K, McFarland E, Capacio BA, Eisner C, Gonzales M, Gregorowicz D, Eisenkraft A, McDonough JH, Schwartz M (2012) Immunomodulation by poly-YE reduces organophosphate-induced brain damage. Brain Behav Immun 26(1):159–169

    Article  PubMed  CAS  Google Scholar 

  • Gilat E, Kadar T, Levy A, Rabinovitz I, Cohen G, Kapon Y, Sahar R, Brandeis R (2005) Anticonvulsant treatment of sarin-induced seizures with nasal midazolam: an electrographic, behavioral, and histological study in freely moving rats. Toxicol Appl Pharmacol 209:74–85

    Article  PubMed  CAS  Google Scholar 

  • Hallak M (1998) Effect of parenteral magnesium sulphate administration on excitatory amino acid receptors in the rat brain. Magnes Res 11:117–131

    PubMed  CAS  Google Scholar 

  • Hallak M, Berman RF, Irtenkauf SM, Evans MI, Cotton DB (1992) Peripheral magnesium sulphate enters the brain and increases the threshold for hippocampal seizures in rats. Am J Obstet Gynecol 167:1605–1610

    PubMed  CAS  Google Scholar 

  • Hallak M, Berman RF, Irtenkauf SM, Janusz CA, Cotton DB (1994) Magnesium sulphate treatment decreases N-methyl-D-aspartate receptor binding in the rat brain: an autoradiographic study. J Soc Gynecol Investig 1:25–30

    PubMed  CAS  Google Scholar 

  • Jutkiewicz EM, Baladi MG, Folk JE, Rice KC, Woods JH (2006) The convulsive and electroencephalographic changes produced by nonpeptidic delta-opioid agonists in rats: comparison with pentylenetetrazol. J Pharmacol Exp Ther 317:1337–1348

    Article  PubMed  CAS  Google Scholar 

  • Kadar T, Cohen G, Sahar R, Alkalai D, Shapira S (1992) Long-term study of brain lesions following soman, in comparison to DFP and metrazol poisoning. Hum Exp Toxicol 11:517–523

    Article  PubMed  CAS  Google Scholar 

  • Kadar T, Shapira S, Cohen G, Sahar R, Alkalay D, Raveh L (1995) Sarin-induced neuropathology in rats. Hum Exp Toxicol 14:252–259

    Article  PubMed  CAS  Google Scholar 

  • Lallement G, Mestries JC, Privat A, Brochier G, Baubichon D, Carpentier P, Kamenka JM, Sentenac-Roumanou H, Burckhart MF, Peoc’h M (1997) GK 11: promising additional neuroprotective therapy for organophosphate poisoning. Neurotoxicology 18:851–856

    PubMed  CAS  Google Scholar 

  • Lemercier G, Carpentier P, Sentenac-Roumanou H, Morelis P (1983) Histological and histochemical changes in the central nervous system of the rat poisoned by an irreversible anticholinesterase organophosphorus compound. Acta Neuropathol (Berl) 61:123–129

    Article  CAS  Google Scholar 

  • Lennox WJ, Harris LW, Talbot BG, Anderson DR (1985) Relationship between reversible acetylcholinesterase inhibition and efficacy against soman lethality. Life Sci 37:793–798

    Article  PubMed  CAS  Google Scholar 

  • Marrs TC (2003) Diazepam in the treatment of organophosphorus ester pesticide poisoning. Toxicol Rev 22:75–81

    Article  PubMed  CAS  Google Scholar 

  • McDonough JH Jr, Shih TM (1993) Pharmacological modulation of soman-induced seizures. Neurosci Biobehav Rev 17:203–215

    Article  PubMed  CAS  Google Scholar 

  • McDonough JH, Shih T-M (1997) Neuropharmacological Mechanisms of Nerve Agent-induced Seizure and Neuropathology. Neurosci Biobehav Rev 21:559–579

    Article  PubMed  CAS  Google Scholar 

  • McIntosh TK, Vink R, Yamakami I, Faden AI (1989) Magnesium protects against neurological deficit after brain injury. Brain Res 482:252–260

    Article  PubMed  CAS  Google Scholar 

  • Myhrer T, Enger S, Aas P (2006) Pharmacological therapies against soman-induced seizures in rats 30 min following onset and anticonvulsant impact. Eur J Pharmacol 548:83–89

    Article  PubMed  CAS  Google Scholar 

  • Myhrer T, Enger S, Aas P (2010) Roles of perirhinal and posterior piriform cortices in control and generation of seizures: a microinfusion study in rats exposed to soman. Neurotoxicology 31:147–153

    Article  PubMed  CAS  Google Scholar 

  • Pajoumand A, Shadnia S, Rezaie A, Abdi M, Abdollahi M (2004) Benefits of magnesium sulphate in the management of acute human poisoning by organophosphorus insecticides. Hum Exp Toxicol 23:565–569

    Article  PubMed  CAS  Google Scholar 

  • Papadopoulos V, Baraldi M, Guilarte TR, Knudsen TB, Lacapere JJ, Lindemann P, Norenberg MD, Nutt D, Weizman A, Zhang MR, Gavish M (2006) Translocator protein (18 kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. Trends Pharmacol Sci 27:402–409

    Article  PubMed  CAS  Google Scholar 

  • Peter JV, Moran JL, Pichamuthu K, Chacko B (2008) Adjuncts and alternatives to oxime therapy in organophosphate poisoning–is there evidence of benefit in human poisoning? A review. Anaesth Intensive Care 36:339–350

    PubMed  CAS  Google Scholar 

  • Petras JM (1994) Neurology and neuropathology of soman-induced brain injury: an overview. J Exp Anal Behav 61:319–329

    Article  PubMed  CAS  Google Scholar 

  • Raveh L, Weissman BA, Cohen G, Alkalay D, Rabinovitz I, Sonego H, Brandeis R (2002) Caramiphen and scopolamine prevent soman-induced brain damage and cognitive dysfunction. Neurotoxicology 23:7–17

    Article  PubMed  CAS  Google Scholar 

  • Raveh L, Brandeis R, Gilat E, Cohen G, Alkalay D, Rabinovitz I, Sonego H, Weissman BA (2003) Anticholinergic and antiglutamatergic agents protect against soman-induced brain damage and cognitive dysfunction. Toxicol Sci 75:108–116

    Article  PubMed  CAS  Google Scholar 

  • Raveh L, Rabinovitz I, Gilat E, Egoz I, Kapon J, Stavitsky Z, Weissman BA, Brandeis R (2008) Efficacy of antidotal treatment against sarin poisoning: the superiority of benactyzine and caramiphen. Toxicol Appl Pharmacol 227:155–162

    Article  PubMed  CAS  Google Scholar 

  • Shih T, McDonough JH Jr, Koplovitz I (1999) Anticonvulsants for soman-induced seizure activity. J Biomed Sci 6:86–96

    PubMed  CAS  Google Scholar 

  • Shih TM, Duniho SM, McDonough JH (2003) Control of nerve agent-induced seizures is critical for neuroprotection and survival. Toxicol Appl Pharmacol 188:69–80

    Article  PubMed  CAS  Google Scholar 

  • Sibai BM (1990) Magnesium sulphate is the ideal anticonvulsant in preeclampsia-eclampsia. Am J Obstet Gynecol 162:1141–1145

    PubMed  CAS  Google Scholar 

  • Singh G, Avasthi G, Khurana D, Whig J, Mahajan R (1998) Neurophysiological monitoring of pharmacological manipulation in acute organophosphate (OP) poisoning. The effects of pralidoxime, magnesium sulphate and pancuronium. Electroencephalogr Clin Neurophysiol 107:140–148

    Article  PubMed  CAS  Google Scholar 

  • Slutsky I, Abumaria N, Wu LJ, Huang C, Zhang L, Li B, Zhao X, Govindarajan A, Zhao MG, Zhuo M, Tonegawa S, Liu G (2010) Enhancement of learning and memory by elevating brain magnesium. Neuron 65:165–177

    Article  PubMed  CAS  Google Scholar 

  • Tattersall J (2009) Seizure activity post organophosphate exposure. Front Biosci 14:3688–3711

    Article  PubMed  CAS  Google Scholar 

  • Taylor P (2005) Anticholinesterase agents. In: Hardman JG, Limbird EL, Gilman AG (eds) The pharmacological basis of therapeutics, 10th edn. McGraw-Hill Inc, New York, pp 175–191

    Google Scholar 

  • Weissman BA, Raveh L (2003) Peripheral benzodiazepine receptors: on mice and human brain imaging. J Neurochem 84:432–437

    Article  PubMed  CAS  Google Scholar 

  • Wolf G, Keilhoff G, Fischer S, Hass P (1990) Subcutaneously applied magnesium protects reliably against quinolinate-induced N-methyl-D-aspartate (NMDA)-mediated neurodegeneration and convulsions in rats: are there therapeutical implications. Neurosci Lett 117:207–211

    Article  PubMed  CAS  Google Scholar 

  • Wolf G, Fischer S, Hass P, Abicht K, Keilhoff G (1991) Magnesium sulphate subcutaneously injected protects against kainate-induced convulsions and neurodegeneration: in vivo study on the rat hippocampus. Neuroscience 43:31–34

    Article  PubMed  CAS  Google Scholar 

  • Young AB, Fagg GE (1990) Excitatory amino acid receptors in the brain: membrane binding and receptor autoradiographic approaches. Trends Pharmacol Sci 11:126–133

    Article  PubMed  CAS  Google Scholar 

  • Zaret GM (1983) Possible treatment of pre-eclampsia with calcium channel blocking agents. Med Hypotheses 12:303–319

    Article  PubMed  CAS  Google Scholar 

  • Zimmer LA, Ennis M, Shipley MT (1997) Soman-induced seizures rapidly activate astrocytes and microglia in discrete brain regions. J Comp Neurol 378:482–492

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Ben-Avi Weissman for his helpful advice and Rita Sahar, G.Yacov, S. Baranes, and Y. Kapon for their excellent technical assistance.

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahaf Katalan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katalan, S., Lazar, S., Brandeis, R. et al. Magnesium sulfate treatment against sarin poisoning: dissociation between overt convulsions and recorded cortical seizure activity. Arch Toxicol 87, 347–360 (2013). https://doi.org/10.1007/s00204-012-0916-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-012-0916-1

Keywords

Navigation