Advertisement

Archives of Toxicology

, Volume 86, Issue 8, pp 1323–1329 | Cite as

Biology and function of the aryl hydrocarbon receptor: report of an international and interdisciplinary conference

  • Charlotte Esser
Meeting Reports

Abstract

The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor present in many cells. The AhR links environmental chemical stimuli with adaptive responses, such as detoxification, cellular homoeostasis or immune responses. Furthermore, novel roles of AhR in physiological and genetic functions are being discovered. This is a report of a recent meeting in Düsseldorf. The meeting highlighted that AhR research has moved from its focus on toxic effects of dioxins and other environmental pollutants to its biological roles. For instance, it was recently discovered that AhR-responsive elements in retrotransposons contribute to the functional structure of the genome. Other exciting new reports concerned the way plant-derived compounds in our diet are necessary for a fully functioning immune system of the gut. Also, human brain tumours use the AhR system to gain growth advantages. Other aspects covered were neurotoxicology, the circadian rhythm, or the breadth of the adaptive and innate immune system (hematopoietic stem cells, dendritic cells, T cells, mast cells). Finally, the meeting dealt with the discovery of new xenobiotic and natural ligands and their use in translational medicine, or cancer biology and AhR.

Keywords

Dioxin Retrotransposons Diet Signalling crosstalk Immune system FICZ Mast cells Neurotoxicology TDO 

Notes

Acknowledgments

Together with my colleagues from the local organizing committee I gratefully acknowledge all meeting participants whose presentations, posters and lively discussions at the meeting contributed so much to its success and inspiration. We apologize to those, who are not specifically mentioned in this meeting report. The meeting was dedicated to Craig Elmets (University of Alabama at Birmingham, USA) and to Josef Abel, who retired from his position as chief toxicologist of the IUF in September 2011. We thank the Deutsche Forschungsgemeinschaft for financial support by grant ES103/4-1.

References

  1. Apetoh L, Quintana FJ, Pot C, Joller N, Xiao S, Kumar D, Burns EJ, Sherr DH, Weiner HL, Kuchroo VK (2010) The aryl hydrocarbon receptor interacts with c-Maf to promote the differentiation of type 1 regulatory T cells induced by IL-27. Nat Immunol 11:854–861PubMedCrossRefGoogle Scholar
  2. Arsenescu V, Arsenescu R, Parulkar M, Karounos M, Zhang X, Baker N, Cassis LA (2011) Polychlorinated biphenyl 77 augments angiotensin II-induced atherosclerosis and abdominal aortic aneurysms in male apolipoprotein E deficient mice. Toxicol Appl Pharmacol 257:148–154PubMedCrossRefGoogle Scholar
  3. Baccarelli A, Pesatori AC, Consonni D, Mocarelli P, Patterson DG Jr, Caporaso NE, Bertazzi PA, Landi MT (2005) Health status and plasma dioxin levels in chloracne cases 20 years after the Seveso, Italy accident. Br J Dermatol 152:459–465PubMedCrossRefGoogle Scholar
  4. Bernshausen T, Jux B, Esser C, Abel J, Fritsche E (2006) Tissue distribution and function of the Aryl hydrocarbon receptor repressor (AhRR) in C57BL/6 and Aryl hydrocarbon receptor deficient mice. Arch Toxicol 80:206–211PubMedCrossRefGoogle Scholar
  5. Bolt HM, Degen GH (2002) Comparative assessment of endocrine modulators with oestrogenic activity. II. Persistent organochlorine pollutants. Arch Toxicol 76:187–193PubMedCrossRefGoogle Scholar
  6. Braeuning A, Kohle C, Buchmann A, Schwarz M (2011) Coordinate regulation of cytochrome P450 1a1 expression in mouse liver by the aryl hydrocarbon receptor and the beta-catenin pathway. Toxicol Sci 122:16–25PubMedCrossRefGoogle Scholar
  7. Casado FL, Singh KP, Gasiewicz TA (2011) Aryl hydrocarbon receptor activation in hematopoietic stem/progenitor cells alters cell function and pathway-specific gene modulation reflecting changes in cellular trafficking and migration. Mol Pharmacol 80:673–682PubMedCrossRefGoogle Scholar
  8. Esser C, Rannug A, Stockinger B (2009) The aryl hydrocarbon receptor and immunity. Trends Immunol 9:447–454CrossRefGoogle Scholar
  9. Funatake CJ, Marshall NB, Kerkvliet NI (2008) 2,3,7,8-Tetrachlorodibenzo-p-dioxin alters the differentiation of alloreactive CD8+ T cells toward a regulatory T cell phenotype by a mechanism that is dependent on aryl hydrocarbon receptor in CD4+ T cells. J Immunotoxicol 5:81–91PubMedCrossRefGoogle Scholar
  10. Gandhi R, Kumar D, Burns EJ, Nadeau M, Dake B, Laroni A, Kozoriz D, Weiner HL, Quintana FJ (2010) Activation of the aryl hydrocarbon receptor induces human type 1 regulatory T cell-like and Foxp3(+) regulatory T cells. Nat Immunol 11:846–853PubMedCrossRefGoogle Scholar
  11. Gassmann K, Abel J, Bothe H, Haarmann-Stemmann T, Merk HF, Quasthoff KN, Rockel TD, Schreiber T, Fritsche E (2010) Species-specific differential AhR expression protects human neural progenitor cells against developmental neurotoxicity of PAHs. Environ Health Perspect 118:1571–1577PubMedCrossRefGoogle Scholar
  12. Girardi M, Lewis JM, Filler RB, Hayday AC, Tigelaar RE (2006) Environmentally responsive and reversible regulation of epidermal barrier function by gammadelta T cells. J Invest Dermatol 126:808–814PubMedCrossRefGoogle Scholar
  13. Jin GB, Moore AJ, Head JL, Neumiller JJ, Lawrence BP (2010) Aryl hydrocarbon receptor activation reduces dendritic cell function during influenza virus infection. Toxicol Sci 116:514–522PubMedCrossRefGoogle Scholar
  14. Kadow S, Jux B, Zahner SP, Wingerath B, Chmill S, Clausen BE, Hengstler J, Esser C (2011) Aryl hydrocarbon receptor is critical for homeostasis of invariant {gamma}{delta} T cells in the murine epidermis. J Immunol 187:3104–3110PubMedCrossRefGoogle Scholar
  15. Kerkvliet NI, Baecher-Steppan L, Smith BB, Youngberg JA, Henderson MC, Buhler DR (1990) Role of the Ah locus in suppression of cytotoxic T lymphocyte activity by halogenated aromatic hydrocarbons (PCBs and TCDD): structure-activity relationships and effects in C57Bl/6 mice congenic at the Ah locus. Fundam Appl Toxicol 14:532–541PubMedCrossRefGoogle Scholar
  16. Kiss EA, Vonarbourg C, Kopfmann S, Hobeika E, Finke D, Esser C, Diefenbach A (2011) Natural aryl hydrocarbon receptor ligands control organogenesis of intestinal lymphoid follicles. Science. doi: 10.1126/science.1214914
  17. Kulkarni PS, Crespo JG, Afonso CA (2008) Dioxins sources and current remediation technologies–a review. Environ Int 34:139–153PubMedCrossRefGoogle Scholar
  18. Lensu S, Tuomisto JT, Tuomisto J, Pohjanvirta R (2011) Characterization of the 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-provoked strong and rapid aversion to unfamiliar foodstuffs in rats. Toxicology 283:140–150PubMedCrossRefGoogle Scholar
  19. Li Y, Innocentin S, Withers DR, Roberts NA, Gallagher AR, Grigorieva EF, Wilhelm C, Veldhoen M (2011) Exogenous stimuli maintain intraepithelial lymphocytes via aryl hydrocarbon receptor activation. Cell. doi: 10.1016/j.cell.2011.09.025
  20. Luecke S, Wincent E, Backlund M, Rannug U, Rannug A (2010) Cytochrome P450 1A1 gene regulation by UVB involves crosstalk between the aryl hydrocarbon receptor and nuclear factor kappaB. Chem Biol Interact 184:466–473PubMedCrossRefGoogle Scholar
  21. Marshall NB, Kerkvliet NI (2010) Dioxin and immune regulation: emerging role of aryl hydrocarbon receptor in the generation of regulatory T cells. Ann NY Acad Sci 1183:25–37PubMedCrossRefGoogle Scholar
  22. Mezrich JD, Fechner JH, Zhang X, Johnson BP, Burlingham WJ, Bradfield CA (2010) An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J Immunol 185:3190–3198PubMedCrossRefGoogle Scholar
  23. Mukai M, Lin TM, Peterson RE, Cooke PS, Tischkau SA (2008) Behavioral rhythmicity of mice lacking AhR and attenuation of light-induced phase shift by 2,3,7,8-tetrachlorodibenzo-p-dioxin. J Biol Rhythms 23:200–210PubMedCrossRefGoogle Scholar
  24. Nagayama J, Kuroki H, Masuda Y, Handa S, Kuratsune M (1985) Genetically mediated induction of aryl hydrocarbon hydroxylase activity in mice by polychlorinated dibenzofuran isomers and 2,3,7,8-tetrachlorodibenzo-p-dioxin. Arch Toxicol 56:226–229PubMedCrossRefGoogle Scholar
  25. Neubert R, Jacob-Muller U, Stahlmann R, Helge H, Neubert D (1990) Polyhalogenated dibenzo-p-dioxins and dibenzofurans and the immune system. 1. Effects on peripheral lymphocyte subpopulations of a non-human primate (Callithrix jacchus) after treatment with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Arch Toxicol 64:345–359PubMedCrossRefGoogle Scholar
  26. Nguyen NT, Kimura A, Nakahama T, Chinen I, Masuda K, Nohara K, Fujii-Kuriyama Y, Kishimoto T (2010) Aryl hydrocarbon receptor negatively regulates dendritic cell immunogenicity via a kynurenine-dependent mechanism. Proc Natl Acad Sci USA 107:19961–19966PubMedCrossRefGoogle Scholar
  27. Opitz CA, Litzenburger UM, Sahm F, Ott M, Tritschler I, Trump S, Schumacher T, Jestaedt L, Schrenk D, Weller M, Jugold M, Guillemin GJ, Miller CL, Lutz C, Radlwimmer B, Lehmann I, von Deimling A, Wick W, Platten M (2011) An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature 478:197–203PubMedCrossRefGoogle Scholar
  28. Platzer B, Richter S, Kneidinger D, Waltenberger D, Woisetschlager M, Strobl H (2009) Aryl hydrocarbon receptor activation inhibits in vitro differentiation of human monocytes and Langerhans dendritic cells. J Immunol 183:66–74PubMedCrossRefGoogle Scholar
  29. Prochazkova J, Kabatkova M, Bryja V, Umannova L, Bernatik O, Kozubik A, Machala M, Vondracek J (2011) The interplay of the aryl hydrocarbon receptor and beta-catenin alters both AhR-dependent transcription and Wnt/beta-catenin signaling in liver progenitors. Toxicol Sci 122:349–360PubMedCrossRefGoogle Scholar
  30. Reggiani G (1978) Medical problems raised by the TCDD contamination in Seveso, Italy. Arch Toxicol 40:161–188PubMedCrossRefGoogle Scholar
  31. Rico de SA, Zago M, Pollock SJ, Sime PJ, Phipps RP, Baglole CJ (2011) Genetic ablation of the aryl hydrocarbon receptor causes cigarette smoke-induced mitochondrial dysfunction and apoptosis. J Biol Chem 286:43214–43228CrossRefGoogle Scholar
  32. Roman AC, Gonzalez-Rico FJ, Fernandez-Salguero PM (2011a) B1-SINE retrotransposons: establishing genomic insulatory networks. Mob Genet Elements 1:66–70PubMedCrossRefGoogle Scholar
  33. Roman AC, Gonzalez-Rico FJ, Molto E, Hernando H, Neto A, Vicente-Garcia C, Ballestar E, Gomez-Skarmeta JL, Vavrova-Anderson J, White RJ, Montoliu L, Fernandez-Salguero PM (2011b) Dioxin receptor and SLUG transcription factors regulate the insulator activity of B1 SINE retrotransposons via an RNA polymerase switch. Genome Res 21:422–432PubMedCrossRefGoogle Scholar
  34. Schmidt JV, Bradfield CA (1996) Ah receptor signaling pathways. Annu Rev Cell Dev Biol 12:55–89PubMedCrossRefGoogle Scholar
  35. Schrenk D, Lipp HP, Wiesmuller T, Hagenmaier H, Bock KW (1991) Assessment of biological activities of mixtures of polychlorinated dibenzo-p-dioxins: comparison between defined mixtures and their constituents. Arch Toxicol 65:114–118PubMedCrossRefGoogle Scholar
  36. Schulz VJ, Smit JJ, Willemsen KJ, Fiechter D, Hassing I, Bleumink R, Boon L, Van den BM, van Duursen MB, Pieters RH (2011) Activation of the aryl hydrocarbon receptor suppresses sensitization in a mouse peanut allergy model. Toxicol Sci 123:491–500PubMedCrossRefGoogle Scholar
  37. Singh KP, Garrett RW, Casado FL, Gasiewicz TA (2011) Aryl hydrocarbon receptor-null allele mice have hematopoietic stem/progenitor cells with abnormal characteristics and functions. Stem Cells Dev 20:769–784PubMedCrossRefGoogle Scholar
  38. Stockinger B, Hirota K, Duarte J, Veldhoen M (2011) External influences on the immune system via activation of the aryl hydrocarbon receptor. Semin Immunol 23:99–105PubMedCrossRefGoogle Scholar
  39. Sutter CH, Bodreddigari S, Campion C, Wible RS, Sutter TR (2011) 2(3), pp. 7,8-Tetrachlorodibenzo-p-dioxin increases the expression of genes in the human epidermal differentiation complex and accelerates epidermal barrier formation. Toxicol Sci 124:128–137PubMedCrossRefGoogle Scholar
  40. Takemoto K, Nakajima M, Fujiki Y, Katoh M, Gonzalez FJ, Yokoi T (2004) Role of the aryl hydrocarbon receptor and Cyp1b1 in the antiestrogenic activity of 2,3,7,8-tetrachlorodibenzo-p-dioxin. Arch Toxicol 78:309–315PubMedCrossRefGoogle Scholar
  41. Thiel R, Koch E, Ulbrich B, Chahoud I (1994) Peri- and postnatal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin: effects on physiological development, reflexes, locomotor activity and learning behaviour in Wistar rats. Arch Toxicol 69:79–86PubMedCrossRefGoogle Scholar
  42. Vogel CF, Matsumura F (2009) A new cross-talk between the aryl hydrocarbon receptor and RelB, a member of the NF-kappaB family. Biochem Pharmacol 77:734–745PubMedCrossRefGoogle Scholar
  43. Vogel C, Donat S, Dohr O, Kremer J, Esser C, Roller M, Abel J (1997) Effect of subchronic 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure on immune system and target gene responses in mice: calculation of benchmark doses for CYP1A1 and CYP1A2 related enzyme activities. Arch Toxicol 71:372–382PubMedCrossRefGoogle Scholar
  44. Vogel CF, Goth SR, Dong B, Pessah IN, Matsumura F (2008) Aryl hydrocarbon receptor signaling mediates expression of indoleamine 2,3-dioxygenase. Biochem Biophys Res Commun 375:331–335PubMedCrossRefGoogle Scholar
  45. Vos JG (1977) Immune suppression as related to toxicology. CRC Crit Rev Toxicol 5:67–101PubMedCrossRefGoogle Scholar
  46. Wang Y, Fan Y, Puga A (2010) Dioxin exposure disrupts the differentiation of mouse embryonic stem cells into cardiomyocytes. Toxicol Sci 115:225–237PubMedCrossRefGoogle Scholar
  47. Wu D, Li W, Lok P, Matsumura F, Adam Vogel CF (2011a) AhR deficiency impairs expression of LPS-induced inflammatory genes in mice. Biochem Biophys Res Commun 410:358–363PubMedCrossRefGoogle Scholar
  48. Wu HY, Quintana FJ, da Cunha AP, Dake BT, Koeglsperger T, Starossom SC, Weiner HL (2011b) In vivo induction of Tr1 cells via mucosal dendritic cells and AHR signaling. PLoS One 6:e23618PubMedCrossRefGoogle Scholar
  49. Yaktine AL, Harrison GG, Lawrence RS (2006) Reducing exposure to dioxins and related compounds through foods in the next generation. Nutr Rev 64:403–409PubMedCrossRefGoogle Scholar
  50. Zhang S, Kim K, Jin UH, Pfent C, Cao H, Amendt B, Liu X, Wilson-Robles H, Safe S (2012) Aryl Hydrocarbon Receptor Agonists Induce MicroRNA-335 Expression and Inhibit Lung Metastasis of Estrogen Receptor Negative Breast Cancer Cells. Mol Cancer Ther 11:108–118PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Leibniz Research Institute for Environmental Medicine (IUF)DüsseldorfGermany

Personalised recommendations