Skip to main content

Chemical and biological properties of toxic metals and use of chelating agents for the pharmacological treatment of metal poisoning

Abstract

Exposure to toxic metals is a well-known problem in industrialized countries. Metals interfere with a number of physiological processes, including central nervous system (CNS), haematopoietic, hepatic and renal functions. In the evaluation of the toxicity of a particular metal it is crucial to consider many parameters: chemical forms (elemental, organic or inorganic), binding capability, presence of specific proteins that selectively bind metals, etc. Medical treatment of acute and chronic metal toxicity is provided by chelating agents, namely organic compounds capable of interacting with metal ions to form structures called chelates. The present review attempts to provide updated information about the mechanisms, the cellular targets and the effects of toxic metals.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Akay C, Thomas C III, Gazitt Y (2004) Arsenic trioxide and paclitaxel induce apoptosis by different mechanisms. Cell Cycle 3:324–334

    PubMed  CAS  Google Scholar 

  2. Åkesson A, Lundh T, Vahter M, Bjellerup P, Lidfedt J, Nerbrand C, Samsioe G, Strömberg U, Skerfving S (2005) Tubular and glomerular kidney effects in Swedish women with low environmental cadmium exposure. Environ Health Perspect 113:1627–1631

    PubMed  Google Scholar 

  3. Åkesson A, Bjellerup P, Lundh T, Lidfeldt J, Nerbrand C, Samsioe G, Skerfving S, Vahter M (2006) Cadmium-induced effects on bone in a population-based study of women. Environ Health Perspect 114:830–834

    PubMed  Google Scholar 

  4. Andersen O (1999) Principles and recent developments in chelation treatment of metal intoxication. Chem Rev 99:2683–2710

    PubMed  CAS  Google Scholar 

  5. Andersen O, Aaseth J (2002) Molecular mechanisms of in vivo metal chelation: implications for clinical treatment of metal intoxications. Environ Health Perspect 110(Suppl 5):887–890

    PubMed  CAS  Google Scholar 

  6. Antman Karen H (2001) The history of arsenic trioxide in cancer therapy. Oncologist 6(2):1–2

    Google Scholar 

  7. Aposhian HV, Aposhian MM (2006) Arsenic toxicology: five questions. Chem Res Toxicol 19:1–15

    PubMed  CAS  Google Scholar 

  8. Aposhian HV, Maiorino RM, Gonzales-Ramirez D, Zuniga-Charles M, Xu Z, Hrlbut KM, Junco-Munoz P, Dart RC, Aposhian MM (1995) Mobilization of heavy metals by newer, therapeutically useful chelating agents. Toxicology 97:23–38

    PubMed  Google Scholar 

  9. Aposhian HV, Zakharyan RA, Avram MD, Sampayo-Reyes A, Wollenberg ML (2004) A review of the enzymology of arsenic metabolism and a new potential role of hydrogen peroxide in the detoxication of the trivalent arsenic species. Toxicol Appl Pharmacol 198:327–335

    PubMed  Google Scholar 

  10. ATSDR (1999) Toxicological profile for cadmium (update). Agency for Toxic Substances and Disease Registry. Atlanta, Georgia, pp 1–397

  11. ATSDR (2000) Toxicological profile for chromium (final report), NTIS Accession No PB2000-108022. Agency for Toxic Substances and Disease Registry, Atlanta, GA, p 461

  12. ATSDR (2007) ToxFAQs for arsenic. Agency for Toxic Substances and Disease Registry. (Accessed November 2009, at http://www.atsdr.cdc.gov/tfacts2.html)

  13. ATSDR (Agency for Toxic Substances and Disease Registry) (1988) Toxicological profile for nickel. Atlanta, GA, USA: ATSDR/U.S. Public Health Service, ATSDR/TP-88/19

  14. Bagchi D, Stohs SJ, Downs BW, Bagchi M, Preuss HG (2002) Citotoxiciy and oxidative mechanisms of different forms of chromium. Toxicology 180:5–22

    PubMed  CAS  Google Scholar 

  15. Bakir F, Damluji SF, Amin-Zaki L, Murtadha M, Khalidi A, al-Rawi NY et al (1973) Methylmercury poisoning. Iraq Sci 181:230–241

    CAS  Google Scholar 

  16. Bakir F, Rustam H, Tikriti S, Al-Damluji SF, Shihristani H (1980) Clinical and epidemiological aspects of methylmercury poisoning. Postgrad Med J 56:1–10

    PubMed  CAS  Google Scholar 

  17. Baselt RC (1988) Biological monitoring methods for industrial chemicals, 2nd edn. PSG Publishing Co, Littleton

    Google Scholar 

  18. Baum CR (1999) Treatment of mercury intoxication. Curr Opin Pediatr 11:265–268

    PubMed  CAS  Google Scholar 

  19. Berglund M, Kesson AA, Bjellerup P, Vahter M (2000) Metal-bone interactions. Toxicol Lett 112–113:219–225

    PubMed  Google Scholar 

  20. Bernard A (2008) Biomarkers of metal toxicity in population studies: research potential and interpretation issues. J Toxicol Environ Health Part A 71:1259–1265

    PubMed  CAS  Google Scholar 

  21. Bertolero F, Pozzi G, Sabbioni E, Saffiotti U (1987) Cellular uptake and metabolic reduction of pentavalent to trivalent arsenic as determinants of cytotoxicity and morphological transformation. Carcinogenesis 8:803–808

    PubMed  CAS  Google Scholar 

  22. Beyersmann D, Hartwig A (2008) Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms. Arch Toxicol 82:493–512

    PubMed  CAS  Google Scholar 

  23. Bhattacharyya MH (2009) Cadmium osteotoxicity in experimental animals: mechanisms and relationship to human exposures. Toxicol Appl Pharmacol 238:258–265

    PubMed  CAS  Google Scholar 

  24. Bigham M, Copes R (2005) Thiomersal in vaccines: balancing the risk of adverse effects with the risk of vaccine-preventable disease. Drug Saf 28:89–101

    PubMed  CAS  Google Scholar 

  25. Bradberry S, Vale A (2009) Dimercaptosuccinic acid (succimer; DMSA) in organic lead poisoning. Clin Toxicol 47:617–631

    Google Scholar 

  26. Bradman A, Eskenazi B, Sutton P, Athanasoulis M, Goldman LR (2001) Iron deficiency associated with higher blood lead in children living in contaminated environments. Environ Health Perspect 109(10):1079–1084

    PubMed  CAS  Google Scholar 

  27. Brodkin E, Copes R, Mattman A, Kennedy J, Kling R, Yassi A (2007) Lead and mercury exposures: interpretation and action. CMAJ 176(1):59–63

    PubMed  Google Scholar 

  28. Brooks WE (2008) Minerals yearbook 2007: arsenic. United States Geological Survey. http://minerals.er.usgs.gov/minerals/pubs/commodity/arsenic/myb1-2007-arsen.pdf

  29. Buchet JP, Lauwerys R (1988) Role of thiols in the in vitro methylation of inorganic arsenic by rat liver cytosol. Biochem Pharmacol 37:3149–3153

    PubMed  CAS  Google Scholar 

  30. Buchet JP, Lauwerys R, Roels H, Bernard A, Bruaux P, Claeys F, Ducoffre G, de Plaen P, Staessen J, Amery A, Lijnen P, Thijs L, Rondia D, Sartor F, Saint Remy A, Nick L (1990) Renal effects of cadmium body burden of the general population. Lancet 336:699–702

    PubMed  CAS  Google Scholar 

  31. Büdinger L, Hertl M (2000) Immunologic mechanisms in hypersensitivity reactions to metal ions: an overview. Allergy 55(2):108–115

    PubMed  Google Scholar 

  32. Cebrián ME, Albores A, Aguilar M, Blakely E (1983) Chronic arsenic poisoning in the north of Mexico. Hum Toxicol 2(1):121–133

    PubMed  Google Scholar 

  33. Centeno JA, Mullick FG, Martinez L, Page NP, Gibb H, Longfellow D, Thompson C, Ladich ER (2002) Pathology related to chronic arsenic exposure. Environ Health Perspect 110:883–886

    PubMed  CAS  Google Scholar 

  34. Cernichiari E, Brewer R, Myers GJ, Marsh DO, Lapham LW, Cox C et al (1995) Monitoring methylmercury during pregnancy: maternal hair predicts fetal brain exposure. Neurotoxicology 16:705–710

    PubMed  CAS  Google Scholar 

  35. Chen L, Lei L, Jin T, Nordberg M, Nordberg GF (2006) Plasma metallothionein antibody, urinary cadmium, and renal dysfunction in a Chinese type 2 diabetic population. Diabetes Care 29:2682–2687

    PubMed  CAS  Google Scholar 

  36. Cheney K, Gumbiner C, Benson B et al (1995) Survival after a severe iron poisoning treated with intermittent infusions of deferoxamine. Clin Toxicol 33:61–66

    CAS  Google Scholar 

  37. Clarkson TW, Magos L, Myers GJ (2003) The toxicology of mercury-current exposures and clinical manifestations. N Engl J Med 349:1731–1737

    PubMed  CAS  Google Scholar 

  38. Cohen SM, Arnold LL, Eldan M, Lewis AS, Beck BD (2006) Methylated arsenicals: the implications of metabolism and carcinogenicity studies in rodents to human risk assessment. Crit Rev Toxicol 36:99–133

    PubMed  CAS  Google Scholar 

  39. Coogan TP, Squibb KS, Motz J, Kinney PL, Costa M (1991) Distribution of chromium within cells of the blood. Toxicol Appl Pharmacol 108:157–166

    PubMed  CAS  Google Scholar 

  40. Costa M (1997) Toxicity and carcinogenicity of Cr(VI) in animal models and humans. Crit Rev Toxicol 27(5):431–442

    PubMed  CAS  Google Scholar 

  41. Cronin Joseph R (2004) The chromium controversy. Altern Complement Ther 10(1):39–42

    Google Scholar 

  42. Danielli JF, Danielli M, Fraser JB, Mitchell PD, Owen LN, Shaw G (1947) BAL-INTRAV: a new non-toxic thiol for intravenous injection in arsenical poisoning: 1. Biological observations. 2. Chemical observations. Biochem J 41(3):325–333

    CAS  Google Scholar 

  43. Das KK, Das SN, Dhundasi SA (2008) Nickel, its adverse health effects and oxidative stress. Ind J Med Res 128:412–425

    CAS  Google Scholar 

  44. De Flora S, Wetterhahn KE (1989) Mechanisms of chromium metabolism and genotoxicity. Life Chem Rep 7:169–244

    Google Scholar 

  45. De Flora S, Bagnasco M, Serra D, Zanacchi P (1990) Genotoxicity of chromium compounds. A review. Mutat Res 238:99–172

    PubMed  Google Scholar 

  46. Denkhaus E, Salnikow K (2002) Nickel essentiality, toxicity, and carcinogenicity. Crit Rev Oncol Hematol 42:35–56

    PubMed  CAS  Google Scholar 

  47. DHHS, US Department of Health and Human Services (2009) Mercury levels in commercial fish and shellfish. Washington (DC). Available: http://www.cfsan.fda.gov/~frf/sea-mehg.html (updated 05/07/2009; accessed 04/11/2009)

  48. Duffus JH (2002) Heavy metals–a meaningless term? (IUPAC technical report). Pure Appl Chem 74(5):793–807

    CAS  Google Scholar 

  49. El-Ashmawy IM, Youssef SA (1999) The antagonistic effect of chlorpromazine on cadmium toxicity. Toxicol Appl Pharmacol 161:34–39

    PubMed  CAS  Google Scholar 

  50. Emsley J (2001) Chromium. Nature’s building blocks: an A-Z guide to the elements. Oxford University Press, Oxford, pp 495–498

    Google Scholar 

  51. Enterline PE, Henderson VL, Marsh GM (1987) Exposure to arsenic and respiratory cancer. A reanalysis. Am J Epidemiol 125:929–938

    PubMed  CAS  Google Scholar 

  52. Environmental Protection Agency (EPA) (1986) Health assessment document for nickel and nickel compounds, Research Triangle Park, NC: Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, EPA-600/8-83-012F. NTIS PB86-232212

  53. Environmental Protection Agency (EPA) (1999) U.S. integrated risk information system (IRIS) on arsenic. National Center for Environmental Assessment, Office of Research and Development, Washington, DC

    Google Scholar 

  54. Environmental Protection Agency (EPA) (2009) Table of products that may contain mercury and recommended management options. http://www.epa.gov/osw/hazard/tsd/mercury/con-prod.htm

  55. European Commission (EC) (2004) Scientific committee on toxicity, ecotoxicity and the environment (CSTEE). Opinion on the results of the risk assessment of: cadmium metal human health (CAS-No.: 7440-43-9 EINECS-no.: 231-152-8), cadmium oxide human health (CAS-No.: 1306-19-0 EINECS-no.: 215-146-2). C7/VR/csteeop/Cdmet-ox hh/080104 D(04). Adopted by the CSTEE during the 41st plenary meeting of 8 January 2004. http://ec.europa.eu/health/ph_risk/committees/sct/documents/out220_en.pdf

  56. European Food Safety Authority (EFSA) (2009) EFSA sets lower tolerable intake level for cadmium in food (http://www.efsa.europa.eu/EFSA/efsa_locale-1178620753812_1211902396263.htm)

  57. European Union Risk Assessment Report: cadmium oxide and cadmium metal, European Communities (2007), European Chemicals Bureau, http://www.chem.unep.ch/Pb_and_Cd/SR/IGO/070928%20UNEP%20Cadmium_ENV_DG_ENTR_draft.pdf

  58. Everett CJ, Frithsen IL (2008) Association of urinary cadmium and myocardial infarction. Environ Res 106:284–286

    PubMed  CAS  Google Scholar 

  59. Food and Drug Administration (2007) U.S. FDA warns again about arsenic in mineral water: Washington, DC, March 24. (Accessed November, 2009 at http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/2007/ucm108875.htm)

  60. Goering PL, Klaassen CD (1983) Altered subcellular distribution of cadmium following cadmium pretreatment: possible mechanism of tolerance to cadmium-induced lethality. Toxicol Appl Pharmacol 70:195–203

    PubMed  CAS  Google Scholar 

  61. Goldoni M, Caglieri A, Poli D, Vettori MV, Corradi M, Apostoli P, Mutti A (2006) Determination of hexavalent chromium in exhaled breath condensate and environmental air among chrome plating workers. Anal Chim Acta 562(2):229–235

    PubMed  CAS  Google Scholar 

  62. Guzzi GP, La Porta CAM (2008) Molecular mechanisms triggered by mercury. Toxicology 244:1–12

    PubMed  CAS  Google Scholar 

  63. HA OS (2006) Occupational safety and health administration, Department of Labor. Occupational exposure to hexavalent chromium. Final rule. Fed Regist 71:10099–10385

    Google Scholar 

  64. Hagino N, Kono M (1955) A study on the cause of Itai-itai-disease. Proceedings of the 17th meeting of the Japanese society of clinical surgeons (in Japanese)

  65. Heath LM, Soole KL, McLaughlin ML, McEwan GT, Edwards JW (2003) Toxicity of environmental lead and the influence of intestinal absorption in children. Rev Environ Health 18(4):231–250

    PubMed  CAS  Google Scholar 

  66. Henretig FM, Karl SR, Weintraub WH (1983) Severe iron poisoning treated with enteral and intravenous deferoxamine. Ann Emerg Med 12:306–309

    PubMed  CAS  Google Scholar 

  67. Hertz-Picciotto I, Smith AH (1993) Observations on the dose response curve for arsenic exposure and lung cancer. Scand J Work Environ Health 19:217–226

    PubMed  CAS  Google Scholar 

  68. Hotz P, Buchet JP, Bernard A, Lison D, Lauwerys R (1999) Renal effects of low-level environmental cadmium exposure: 5-year follow-up of a subcohort from the Cadmibel study. Lancet 354:1508–1513

    PubMed  CAS  Google Scholar 

  69. Hu H (1998) Bone lead as a new biologic marker of lead dose: recent findings and implications for public health. Environ Health Perspect 106(4):961–967

    PubMed  CAS  Google Scholar 

  70. Hu H, Shih R, Rothenberg S, Schwartz BS (2007) The epidemiology of lead toxicity in adults: measuring dose and consideration of other methodologic issues. Environ Health Perspect 115(3):455–462

    PubMed  CAS  Google Scholar 

  71. Hughes MF (2002) Arsenic toxicity and potential mechanisms of action. Toxicol Lett 133:1–16

    PubMed  CAS  Google Scholar 

  72. IARC (1987) Monographs on the evaluation of carcinogenic risks to humans. overall evaluations of carcinogenicity: an updating of IARC monographs. Arsenic Arsenic Compd 1–42(l.7):100–106

  73. IARC (1990) IARC monographs on the evaluation of carcinogenic risks to humans. Chromium, nickel and welding, vol 49 at http://monographs.iarc.fr/ENG/Monographs/vol49/volume49.pdf

  74. IARC (2004) Monographs on the evaluation of carcinogenic risks to humans. Some drinking-water disinfectants and contaminants, including arsenic 84:41–267

  75. Iavicoli I, Fontana L, Bargamanschi A (2009) The effects of metals as endocrine disruptors. J Toxicol Environ Health Part B 12:206–223

    CAS  Google Scholar 

  76. Järup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182

    PubMed  Google Scholar 

  77. Järup L, Åkesson A (2009) Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol 238:201–208

    PubMed  Google Scholar 

  78. Järup L, Rogenfelt A, Elinder CG, Nogawa K, Kjellstrom T (1983) Biological half-time of cadmium in the blood of workers after cessation of exposure. Scand J Work Environ Health 9:327–331

    PubMed  Google Scholar 

  79. Järup L, Berglund M, Elinder CG, Nordberg G, Vahter M (1998) Health effects of cadmium exposure-a review of the literature and a risk estimate. Scand J Work Environ Health 24(1):1–51

    PubMed  Google Scholar 

  80. Järup L, Hellström L, Alfvén T, Carlsson MD, Grubb A, Persson B, Pettersson C, Spång G, Schütz A, Elinder CG (2000) Low level exposure to cadmium and early kidney damage: the OSCAR study. Occup Environ Med 57:668–672

    PubMed  Google Scholar 

  81. Kalia K, Flora SJS (2005) Strategies for safe and effective therapeutic measures for chronic arsenic and lead poisoning. J Occup Health 47:1–21

    PubMed  CAS  Google Scholar 

  82. Kasprzak KS, Sunderman FW, Salnikow K (2003) Nickel carcinogenesis. Mutat Res 533:67–97

    PubMed  CAS  Google Scholar 

  83. Katz SA, Salem H (1993) The toxicology of chromium with respect to its chemical speciation: a review. J Appl Toxicol 13(3):217–224

    PubMed  CAS  Google Scholar 

  84. Kern M, Wisniewski M, Cabell L, Audesirk G (2000) Inorganic lead and calcium interact positively in activation of calmodulin. Neurotoxicology 21(3):353–363

    PubMed  CAS  Google Scholar 

  85. Klaassen CD, Liu J, Diwan BA (2009) Metallothionein protection of cadmium toxicity. Toxicol Appl Pharmacol 238(3):215–220

    PubMed  CAS  Google Scholar 

  86. Kobayashi E, Suwazono Y, Honda R, Dochi M, Nishijo M, Kido T, Nakagawa H (2008) Changes in renal tubular and glomerular functions and biological acid–base balance after soil replacement in Cd-polluted rice paddies calculated with a general linear mixed model. Biol Trace Elem Res 124:164–172

    PubMed  CAS  Google Scholar 

  87. Kostial K (1986) Cadmium. In: Mertz W (ed) Trace elements in human and animal nutrition, vol 2. Academic Press, Orlando, pp 319–345

    Google Scholar 

  88. Kotaś J, Stasicka Z (2000) Chromium occurrence in the environment and methods of its speciation. Environ Pollut 107(3):263–283

    PubMed  Google Scholar 

  89. Kumpulainen JT (1992) Chromium content of foods and diets. Biol Trace Elem Res 32:9–18

    PubMed  CAS  Google Scholar 

  90. Labbé RF, Vreman HJ, Stevenson DK (1999) Zinc protoporphyrin: a metabolite with a mission. Clin Chem 45(12):2060–2072

    PubMed  Google Scholar 

  91. Lamborg CH, Fitzgerald WF, O’Donnell J, Torgerson T (2002) A non-steady-state compartmental model of global-scale mercury biogeochemistry with interhemispheric atmospheric gradients. Geochim Cosmochim Acta 66:1105–1118

    CAS  Google Scholar 

  92. Lerman SA, Clarkson TW, Gerson RJ (1983) Arsenic uptake and metabolism by liver cells is dependent on arsenic oxidation state. Chem Biol Interact 45:401–406

    PubMed  CAS  Google Scholar 

  93. Levina A, Lay PA (2005) Mechanistic studies of relevance to the biological activities of chromium. Coord Chem Rev 249:281–298

    CAS  Google Scholar 

  94. Levina A, Lay PA (2008) Chemical properties and toxicity of Chromium(III) nutritional supplements. Chem Res Toxicol 21:563–571

    PubMed  CAS  Google Scholar 

  95. Levina A, Codd R, Dillon CT, Lay PA (2003) Chromium in biology: toxicology and nutritional aspects. Prog Inorg Chem 51:145–250

    CAS  Google Scholar 

  96. Lindqvist O, Johansson K, Aastrup M, Andersson A, Bringmark L, Hovsenius G, Hakanson L, Iverfeldt A, Meili M, Timm B (1991) Mercury in the Swedish environment-recent research on causes, consequences and corrective methods. Water Air Soil Pollut 55:1–261

    Google Scholar 

  97. Liu J, Goyer R, Waalkes MP (2007a) A toxic effects of metals. In: Klaassen CD (ed) Casarett and Doull’s toxicology-the basic science of poisons, 7th edn. McGraw Hill, New York, pp 931–979

    Google Scholar 

  98. Liu J, Cheng ML, Yang Q, Shan KR, Shen J, Zhou Y, Zhang X, Dill AL, Waalkes MP (2007b) Blood metallothionein transcript as a biomarker for metal sensitivity: low blood metallothionein transcripts in arsenicosis patients from Guizhou, China. Environ Health Perspect 115:1101–1106

    PubMed  CAS  Google Scholar 

  99. Lynes MA, Kang YJ, Sensi SL, Perdrizet GA, Hightower LE (2007) Heavy metal ions in normal physiology, toxic stress, and cytoprotection. Ann N Y Acad Sci 1113:159–172

    PubMed  CAS  Google Scholar 

  100. Mandal BK, Ogra Y, Anzai K, Suzuki KT (2004) Speciation of arsenic in biological samples. Toxicol Appl Pharmacol 198:307–318

    PubMed  CAS  Google Scholar 

  101. Mann KV, Picciotti MA, Spevack TA et al (1989) Management of acute iron overdose. Clin Pharm 8:428–440

    PubMed  CAS  Google Scholar 

  102. Martelli A, Rousselet E, Dycke C, Bouron A, Moulis JM (2006) Cadmium toxicity in animal cells by interference with essential metals. Biochimie 88:1807–1814

    PubMed  CAS  Google Scholar 

  103. Martin SF, Merfort I, Thierse HJ (2006) Interactions of chemicals and metal ions with proteins and role for immune responses. Mini Rev Med Chem 6(3):247–255

    PubMed  CAS  Google Scholar 

  104. Mason RP, Fitzgerald WF, Morel FMM (1994) The biogeochemical cycling of elemental mercury: anthropogenic influences. Geochim Cosmochim Acta 58:3191–3198

    CAS  Google Scholar 

  105. Matsuno K, Kodama Y, Tsuchiya K (1991) Biological half-time and body burden of cadmium in dogs after a long-term oral administration of cadmium. Biol Trace Elem Res 29:111–123

    PubMed  CAS  Google Scholar 

  106. McFarland RB, Reigel H (1978) Chronic mercury poisoning from a single brief exposure. J Occup Med 20:532–534

    PubMed  CAS  Google Scholar 

  107. Miller WH Jr, Schipper HM, Lee JS, Singer J, Waxman S (2002) Mechanisms of action of arsenic trioxide. Cancer Res 62:3893–3903

    PubMed  CAS  Google Scholar 

  108. Morgan LG, Usher V (1994) Health problems associated with nickel refining and use. Ann Occup Hyg 38:189–198

    PubMed  CAS  Google Scholar 

  109. Mückter H, Liebl B, Reichl FX, Hunder G, Walther U, Fichtl B (1997) Are we ready to replace dimercaprol (BAL) as an arsenic antidote? Hum Exp Toxicol 16(8):460–465

    PubMed  Google Scholar 

  110. Muntau H, Baudo R (1992) Sources of cadmium, its distribution and turnover in the freshwater environment. IARC 118:133–148

    CAS  Google Scholar 

  111. Murata K, Iwata T, Dakeishi M, Karita K (2009) Lead toxicity: does the critical level of lead resulting in adverse effects differ between adults and children? J Occup Health 51(1):1–12

    PubMed  CAS  Google Scholar 

  112. Nielsen FH (1998) Ultratrace elements in nutrition: current knowledge and speculation. J Trace Elements Exp Med 11:251–274

    CAS  Google Scholar 

  113. Nolan CV, Shaikh ZA (1992) Lead nephrotoxicity and associated disorders: biochemical mechanisms. Toxicology 73:127–146

    PubMed  CAS  Google Scholar 

  114. Nordberg GF, Goyer R, Nordberg M (1975) Comparative toxicity of cadmium metallothionein and cadmium chloride on mouse kidney. Arch Pathol 99:192–197

    PubMed  CAS  Google Scholar 

  115. Nordberg M, Jin T, Nordberg GF (1992) Cadmium, metallothionein and renal tubular toxicity. IARC 118:293–297

    CAS  Google Scholar 

  116. O’Brien TJ, Ceryak S, Patierno SR (2003) Complexities of chromium carcinogenesis: role of cellular response, repair and recovery mechanisms. Mutat Res 533:3–36

    PubMed  Google Scholar 

  117. O’Flaherty EJ (1993) Physiologically based models for boneseeking elements. IV. Kinetics of lead disposition in humans. Toxicol Appl Pharmacol 118(1):16–29

    PubMed  Google Scholar 

  118. Olsson IM, Bensryd I, Lundh T, Ottosson H, Skerfving S, Oskarsson A (2002) Cadmium in blood and urine-impact of sex, age, dietary intake, iron status, and former smoking-association of renal effects. Environ Health Perspect 110(12):1185–1190

    PubMed  CAS  Google Scholar 

  119. Pacyna EG, Pacyna JM, Sundseth K, Munthe J, Kindbom K, Wilson S, Steenhuisen F, Maxson P (2009) Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020. Atmos Environ. doi:10.1016/j.atmosenv.2009.06.009

  120. Patrick L (2006) Lead toxicity, a review of the literature. Part 1: exposure, evaluation and treatment. Altern Med Rev 11(1):2–22

    PubMed  Google Scholar 

  121. Paustenbach DJ, Panko JM, Fredrick MM, Finley BL, Proctor DM (1997) Urinary chromium as a biological marker of environmental exposure: what are the limitations? Reg Toxicol Pharmacol 26:S23–S34

    CAS  Google Scholar 

  122. Pearce JMS (2007) Burton’s line in lead poisoning. Eur Neurol 57(2):118–119

    PubMed  CAS  Google Scholar 

  123. Peters RA, Stocken LA, Thompson RHS (1945) British Anti-Lewisite (BAL). Nature 156:616–619

    CAS  Google Scholar 

  124. Petrick JS, Ayala-Fierro F, Cullen WR, Carter DE, Aposhian HV (2000) Monomethylarsonous acid (MMAIII) is more toxic than arsenite in Chang human hepatocytes. Toxicol Appl Pharmacol 163:203–207

    PubMed  CAS  Google Scholar 

  125. Petrick JS, Jagadish B, Mash EA, Aposhian HV (2001) Monomethylarsonous acid (MMAIII) and arsenite: LD50 in hamsters and in vitro inhibition of pyruvate dehydrogenase. Chem Res Toxicol 14:651–656

    PubMed  CAS  Google Scholar 

  126. Powell JJ, Burden TJ, Greenfield SM, Taylor PD, Thompson RPH (1999) Urinary excretion of essential metal following intravenous calcium disodium edentate: an estimate of free zinc and zinc status in man. J Inorg Biochem 75:159–165

    PubMed  CAS  Google Scholar 

  127. Rabinowitz MB (1991) Toxicokinetics of bone lead. Environ Health Perspect 91:33–37

    PubMed  CAS  Google Scholar 

  128. Rabinowitz MB, Wetherill GW, Kopple JD (1973) Lead metabolism in the normal human: stable isotope studies. Science 182(113):725–727

    PubMed  CAS  Google Scholar 

  129. Ragsdale SW (2009) Nickel-based enzyme systems. J Biol Chem 284:18571–18575

    PubMed  CAS  Google Scholar 

  130. RC IA (1993) Beryllium, cadmium, mercury, and exposures in the glass manufacturing industry. International agency for research on cancer monographs on the evaluation of carcinogenic risks to humans. IARC Scientific Publications, Lyon, pp 1–415

    Google Scholar 

  131. Rettmer RL, Carlson TH, Origenes ML, Jack RM, Labb RF (1999) Zinc protoporphyrin/heme ratio for diagnosis of preanemic iron deficiency. Pediatrics 104(3):e37

    PubMed  CAS  Google Scholar 

  132. Risher JF, Amler SN (2005) Mercury exposure: evaluation and intervention the inappropriate use of chelating agents in the diagnosis and treatment of putative mercury poisoning. Neurotoxicology 26:691–699

    PubMed  CAS  Google Scholar 

  133. Roussel AM, Andriollo-Sanchez M, Ferry M, Bryden NA, Anderson RA (2007) Food chromium content, dietary chromium intake, related biological variables in French free-living elderly. Br J Nutr 98(2):326–331

    PubMed  CAS  Google Scholar 

  134. Saha JC, Dikshit AK, Bandyopadhyay M, Saha KC (1999) A review of arsenic poisoning and its effects on human health. Crit Rev Environ Sci Technol 29:281–313

    CAS  Google Scholar 

  135. Salnikow K, Zhitkovich A (2008) Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: nickel, arsenic, and chromium. Chem Res Toxicol 21(1):28–44

    PubMed  Google Scholar 

  136. Saper RB, Kales SN, Paquin J et al (2004) Heavy metal content of Ayurvedic herbal medicine products. JAMA 292:2868–2873

    PubMed  CAS  Google Scholar 

  137. Satarug S, Moore MR (2004) Adverse health effects of chronic exposure to low-level cadmium in foodstuffs and cigarette smoke. Environ Health Perspect 112:1099–1103

    PubMed  CAS  Article  Google Scholar 

  138. Sauer JM, Waalkes MP, Hooser SB, Kuester RK, McQueen CA, Sipes IG (1997) Suppression of Kupffer cell function prevents cadmium induced hepatocellular necrosis in the male Sprague-Dawley rat. Toxicology 121:155–164

    PubMed  CAS  Google Scholar 

  139. Schutte R, Nawrot TS, Richart T, Thijs L, Vanderschueren D, Kuznetsova T, Van Hecke E, Roels HA, Staessen JA (2008a) Bone resorption and environmental exposure to cadmium in women: a population study. Environ Health Perspect 116:777–783

    PubMed  CAS  Google Scholar 

  140. Schutte R, Nawrot T, Richart T, Thijs L, Roels HA, Van Bortel LM, Struijker-Boudier H, Staessen JA (2008b) Arterial structure and function and environmental exposure to cadmium. Occup Environ Med 65:412–419

    PubMed  CAS  Google Scholar 

  141. Shannon M, Graef J, Lovejoy FH (1988) Efficacy and toxicity of d-penicillamine in low level lead poisoning. J Pediatr 112:799–804

    PubMed  CAS  Google Scholar 

  142. Shen Y, Shen ZX, Yan H, Chen J, Zeng XY, Li JM, Li XS, Wu W, Xiong SM, Zhao WL, Tang W, Wu F, Liu YF, Niu C, Wang ZY, Chen SJ, Chen Z (2001) Studies on the clinical efficacy and pharmacokinetics of low-dose arsenic trioxide in the treatment of relapsed acute promyelocytic leukemia: a comparison with conventional dosage. Leukemia 15:735–741

    PubMed  CAS  Google Scholar 

  143. Snow ET (1992) Metal carcinogenesis: mechanistic implications. Pharmacol Ther 53(1):31–65

    PubMed  CAS  Google Scholar 

  144. Stallings D, Vincent JB (2006) Chromium: a case study in how not to perform nutritional research. Curr Top Nutraceut Res 4:89–112

    CAS  Google Scholar 

  145. Styblo M, Del Razo LM, Vega L, Germolec DR, LeCluyse EL, Hamilton GA, Reed W, Wang C, Cullen WR, Thomas DJ (2000) Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells. Arch Toxicol 74:289–299

    PubMed  CAS  Google Scholar 

  146. Tallman MS (2007) Treatment of relapsed or refractory acute promyelocytic leukemia. Best Pract Res Clin Haematol 20:57–65

    PubMed  Google Scholar 

  147. Tchounwou PB, Patlolla AK, Centeno JA (2003) Carcinogenic and systemic health effects associated with arsenic exposure—a critical review. Toxicol Pathol 31:575–588

    PubMed  CAS  Google Scholar 

  148. Tchounwou PB, Centeno JA, Patlolla AK (2004) Arsenic toxicity, mutagenesis, and carcinogenesis-a health risk assessment and management approach. Mol Cell Biochem 255:47–55

    PubMed  CAS  Google Scholar 

  149. Thévenod F (2009) Cadmium and cellular signalling cascades: to be or not to be? Toxicol Appl Pharmacol 238(3):221–239

    PubMed  Google Scholar 

  150. Thomas DJ, Styblo M, Lin S (2001) The cellular metabolism and systemic toxicity of arsenic. Toxicol Appl Pharmacol 176:127–144

    PubMed  CAS  Google Scholar 

  151. Thompson J, Bannigan J (2008) Cadmium: toxic effects on the reproductive system and the embryo. Reprod Toxicol 25:304–315

    PubMed  CAS  Google Scholar 

  152. Tseng CH (2005) Blackfoot disease and arsenic: a never-ending story. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 23(1):55–74

    PubMed  Google Scholar 

  153. Tsuda T, Yorifuji T, Takao S, Miyai M, Babazono A (2009) Minamata disease: catastrophic poisoning due to a failed public health response. J Public Healthy Policy 30:54–67

    Google Scholar 

  154. Ullrich SM, Tanton TW, Abdrashitova SA (2001) Mercury in the aquatic environment: a review of factors affecting methylation. Crit Rev Environ Sci Technol 31:241–293

    CAS  Google Scholar 

  155. Vahidnia A, Van der Voet GB, de Wolff FA (2007) Arsenic neurotoxicity-a review. Hum Exp Toxicol 26:823–832

    PubMed  CAS  Google Scholar 

  156. Vas J, Monestier M (2008) Immunology of mercury. Ann NY Acad Sci 1143:240–267

    PubMed  CAS  Google Scholar 

  157. Vasak M (2005) Advances in metallothionein structure and functions. J Trace Elem Med Biol 19:13–17

    PubMed  CAS  Google Scholar 

  158. Vroom FQ, Greer M (1972) Mercury vapour intoxication brain 95:305–318

    CAS  Google Scholar 

  159. Waalkes MP (2003) Cadmium carcinogenesis. Mutat Res 533:107–120

    PubMed  CAS  Google Scholar 

  160. Wang C, Brown S, Bhattacharyya MH (1994) Effect of cadmium on bone calcium and 45Ca in mouse dams on a calcium-deficient diet: evidence of Itai-Itai-like syndrome. Toxicol Appl Pharmacol 127:320–330

    PubMed  CAS  Google Scholar 

  161. Washko P, Cousins RJ (1977) Role of dietary calcium and calcium binding protein in cadmium toxicity in rats. J Nutr 107(5):920–928

    PubMed  CAS  Google Scholar 

  162. Weiss B, Clarkson TW, Simon W (2002) Silent latency periods in methylmercury poisoning and in neurodegenerative disease. Environ Health Perspect 110(5):851–854

    PubMed  CAS  Google Scholar 

  163. White LD, Cory-Slechta DA, Gilbert ME, Tiffany-Castiglioni E, Zawia NH, Virgolini M, Rossi-George A, Lasley SM, Qian YC, Riyaz Basha MD (2007) New and evolving concepts in the neurotoxicology of lead. Toxicol Appl Pharmacol 225:1–27

    PubMed  CAS  Google Scholar 

  164. WHO (1991) Environmental health criteria 118. Inorganic mercury. International program on chemical safety. World Health Organization, Geneva

    Google Scholar 

  165. WHO (1992a) Environmental Health Criteria 134. Cadmium, Geneva

    Google Scholar 

  166. WHO (1992) Environmental Health Criteria 135. Cadmium-environmental aspects, Geneva

  167. Wise JP Sr, Wise SS, Little JE (2002) The cytotoxicity and genotoxicity of particulate and soluble hexavalent chromium in human lung cells. Mut Res 517:221–229

    CAS  Google Scholar 

  168. Yager JW, Wiencke JK (1997) Inhibition of poly(ADP-ribose) polymerase by arsenite. Mutat Res 386:345–351

    PubMed  CAS  Google Scholar 

  169. Yeh S, How SW, Lin CS (1968) Arsenical cancer of skin. Histologic study with special reference to Bowen’s disease. Cancer 21(2):312–339

    PubMed  CAS  Google Scholar 

  170. Zalups RK (2000) Molecular interactions with mercury in the kidney. Pharmacol Rev 52:113–143

    PubMed  CAS  Google Scholar 

  171. Zhitkovich A (2002) Chromium: exposure, toxicity and biomonitoring approaches. In: Wilson SH, Suk WA (eds) Biomarkers of environmentally associated disease: technologies, Concepts, and perspectives. CRC Press LLC, New York, pp 269–287

    Google Scholar 

  172. Zhitkovich A (2005) Importance of chromium-DNA adducts in mutagenicity and toxicity of chromium(VI). Chem Res Toxicol 18:3–11

    PubMed  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Maria Stefania Sinicropi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sinicropi, M.S., Amantea, D., Caruso, A. et al. Chemical and biological properties of toxic metals and use of chelating agents for the pharmacological treatment of metal poisoning. Arch Toxicol 84, 501–520 (2010). https://doi.org/10.1007/s00204-010-0544-6

Download citation

Keywords

  • Metal poisoning
  • Lead
  • Cadmium
  • Mercury
  • Arsenic
  • Chromium
  • Nickel
  • Chelating agents