Archives of Toxicology

, Volume 83, Issue 10, pp 909–924 | Cite as

Subacute exposure to N-ethyl perfluorooctanesulfonamidoethanol results in the formation of perfluorooctanesulfonate and alters superoxide dismutase activity in female rats

  • Wei Xie
  • Qian Wu
  • Izabela Kania-Korwel
  • Job C. Tharappel
  • Sanjay Telu
  • Mitchell C. Coleman
  • Howard P. Glauert
  • Kurunthachalam Kannan
  • S. V. S.  Mariappan
  • Douglas R. Spitz
  • Jamie Weydert
  • Hans-Joachim Lehmler
Toxicokinetics and Metabolism

Abstract

Perfluorooctanesulfonamides, such as N-ethyl perfluorooctanesulfonamidoethanol (N-EtFOSE), are large scale industrial chemicals but their disposition and toxicity are poorly understood despite significant human exposure. The hypothesis that subacute exposure to N-EtFOSE, a weak peroxisome proliferator, causes a redox imbalance in vivo was tested using the known peroxisome proliferator, ciprofibrate, as a positive control. Female Sprague–Dawley rats were treated orally with N-EtFOSE, ciprofibrate or corn oil (vehicle) for 21 days, and levels of N-EtFOSE and its metabolites as well as markers of peroxisome proliferation and oxidative stress were assessed in serum, liver and/or uterus. The N-EtFOSE metabolite profile in liver and serum was in good agreement with reported in vitro biotransformation pathways in rats and the metabolite levels decreasing in the order perfluorooctanesulfonate ≫ perfluorooctanesulfonamide ~ N-ethyl perfluorooctanesulfonamidoacetate ≫ perfluorooctanesulfonamidoethanol ~ N-EtFOSE. Although N-EtFOSE treatment significantly decreased the growth rate, increased relative liver weight and activity of superoxide dismutases (SOD) in liver and uterus (total SOD, CuZnSOD and MnSOD), a metabolic study revealed no differences in the metabolome in serum from N-EtFOSE-treated and control animals. Ciprofibrate treatment increased liver weight and peroxisomal acyl Co-A oxidase activity in the liver and altered antioxidant enzyme activities in the uterus and liver. According to NMR metabolomic studies, ciprofibrate treated animals had altered serum lipid profiles compared to N-EtFOSE-treated and control animals, whereas putative markers of peroxisome proliferation in serum were not affected. Overall, this study demonstrates the biotransformation of N-EtFOSE to PFOS in rats that is accompanied by N-EtFOSE-induced alterations in antioxidant enzyme activity.

Keywords

Metabolomics Perfluorooctanesulfonamides Perfluorooctanesulfonate Peroxisomal acyl Co-A oxidase Superoxide dismutase 

Supplementary material

204_2009_450_MOESM1_ESM.docx (269 kb)
Supplementary material 1 (DOCX 268 kb)

References

  1. Aebi H (1984) Catalase in vitro. In: Packer L (ed) Methods in enzymology. Academic Press, Dublin, pp 121–126Google Scholar
  2. Ala-Korpela M (2008) Critical evaluation of 1H NMR metabonomics of serum as a methodology for disease risk assessment and diagnostics. Clin Chem Lab Med 46:27–42. doi:10.1515/CCLM.2008.006 PubMedCrossRefGoogle Scholar
  3. Anderson ME (1985) Tissue glutathione. In: Greenwald R (ed) Methods for oxygen radical research. CRC Press, Boca Raton, pp 317–323Google Scholar
  4. Arrendale RF, Stewart JT, Manning R, Vitayavirasuk B (1989) Determination of GX 071 and its major metabolite in rat blood by cold on-column injection capillary GC/ECD. J Agric Food Chem 37:1130–1135. doi:10.1021/jf00088a069 CrossRefGoogle Scholar
  5. Austin ME, Kasturi BS, Barber M, Kannan K, MohanKumar PS, MohanKumar SM (2003) Neuroendocrine effects of perfluorooctane sulfonate in rats. Environ Health Perspect 111:1485–1489PubMedGoogle Scholar
  6. Beers RF, Sizer IW (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195:133–140PubMedGoogle Scholar
  7. Berthiaume J, Wallace KB (2002) Perfluorooctanoate, perflourooctanesulfonate, and N-ethyl perfluorooctanesulfonamido ethanol; peroxisome proliferation and mitochondrial biogenesis. Toxicol Lett 129:23–32. doi:10.1016/S0378-4274(01)00466-0 PubMedCrossRefGoogle Scholar
  8. Borges T, Peterson RE, Pitot HC, Robertson LW, Glauert HP (1993) Effect of the peroxisome proliferator perfluorodecanoic acid on the promotion of two-stage hepatocarcinogenesis in rats. Cancer Lett 72:111–120. doi:10.1016/0304-3835(93)90019-6 PubMedCrossRefGoogle Scholar
  9. Calafat AM, Wong LY, Kuklenyik Z, Reidy JA, Needham LL (2007) Polyfluoroalkyl chemicals in the U.S. population: data from the National Health and Nutrition Examination Survey (NHANES) 2003–2004 and comparisons with NHANES 1999–2000. Environ Health Perspect 115:1596–1602PubMedCrossRefGoogle Scholar
  10. Case MT, York RG, Christian MS (2001) Rat and rabbit oral developmental toxicology studies with two perfluorinated compounds. Int J Toxicol 20:101–109. doi:10.1080/10915810151115236 PubMedCrossRefGoogle Scholar
  11. Chen L-C, Borges T, Glauert HP, Knight SAB, Sunde RA, Schramm H, Oesch F, Chow CK, Robertson LW (1990) Modulation of selenium-dependent gluthathione peroxidase by perfluorodecanoic acid in rats: effect of dietary selenium. J Nutrition 120:298–304Google Scholar
  12. Chen H, Huang C-y, Wilson MW, Lay LT, Robertson LW, Chow CK, Glauert HP (1994) Effect of the peroxisome proliferators ciprofibrate and perfluorodecanoic acid on hepatic cell proliferation and toxicity in Sprague–Dawley rats. Carcinogenesis 15:2847–2850. doi:10.1093/carcin/15.12.2847 PubMedCrossRefGoogle Scholar
  13. Coen M, Lenz EM, Nicholson JK, Wilson ID, Pognan F, Lindon JC (2003) An integrated metabonomic investigation of acetaminophen toxicity in the mouse using NMR spectroscopy. Chem Res Toxicol 16:295–303. doi:10.1021/tx0256127 PubMedCrossRefGoogle Scholar
  14. Connor SC, Hodson MP, Ringeissen S, Sweatman BC, McGill PJ, Waterfield CJ, Haselden JN (2004) Development of a multivariate statistical model to predict peroxisome proliferation in the rat, based on urinary 1H-NMR spectral patterns. Biomarkers 9:364–385. doi:10.1080/13547500400006005 PubMedCrossRefGoogle Scholar
  15. Cui L, Zhou Q-f, Liao C-y, Fu J-j, Jiang G-b (2009) Studies on the toxicological effects of PFOA and PFOS on rats using histological observation and chemical analysis. Arch Environ Contam Toxicol 56:338–349. doi:10.1007/s00244-008-9194-6 PubMedCrossRefGoogle Scholar
  16. Curran I, Hierlihy SL, Liston V, Pantazopoulos P, Nunnikhoven A, Tittlemier S, Barker M, Trick K, Bondy G (2008) Altered fatty acid homeostasis and related toxicologic sequelae in rats exposed to dietary potassium perfluorooctanesulfonate (PFOS). J Toxicol Environ Health A 71:1526–1541. doi:10.1080/15287390802361763 PubMedCrossRefGoogle Scholar
  17. Delaney J, Hodson MP, Thakkar H, Connor SC, Sweatman BC, Kenny SP, McGill PJ, Holder JC, Hutton KA, Haselden JN, Waterfield CJ (2005) Tryptophan-NAD+ pathway metabolites as putative biomarkers and predictors of peroxisome proliferation. Arch Toxicol 79:208–223. doi:10.1007/s00204-004-0625-5 PubMedCrossRefGoogle Scholar
  18. Era S, Harada KH, Toyoshima M, Inoue K, Minata M, Saito N, Takigawa T, Shiota K, Koizumi A (2009) Cleft palate caused by perfluorooctane sulfonate is caused mainly by extrinsic factors. Toxicology 256:42–47. doi:10.1016/j.tox.2008.11.003 PubMedCrossRefGoogle Scholar
  19. Fromme H, Tittlemier SA, Völkel W, Wilhelm M, Twardella D (2009) Perfluorinated compounds—exposure assessment for the general population in western countries. Int J Hyg Environ Health 212:239–270PubMedCrossRefGoogle Scholar
  20. Giesy JP, Kannan K (2001) Global distribution of perfluorooctane sulfonate in wildlife. Environ Sci Technol 35:1339–1342. doi:10.1021/es001834k PubMedCrossRefGoogle Scholar
  21. Glauert HP, Srinivasan S, Tatum VL, Chen LC, Saxon DM, Lay LT, Borges T, Baker M, Chen LH, Robertson LW (1992) Effects of the peroxisome proliferators ciprofibrate and perfluorodecanoic acid on hepatic cellular antioxidants and lipid peroxidation in rats. Biochem Pharmacol 43:1353–1359. doi:10.1016/0006-2952(92)90513-I PubMedCrossRefGoogle Scholar
  22. Goel SK, Lalwani ND, Reddy JK (1986) Peroxisome proliferation and lipid peroxidation in rat liver. Cancer Res 46:1324–1330PubMedGoogle Scholar
  23. Guruge KS, Yeung LWY, Yamanaka N, Miyazaki S, Lam PKS, Giesy JP, Jones PD, Yamashita N (2006) Gene expression profiles in rat liver treated with perfluorooctanoic acid (PFOA). Toxicol Sci 89:93–107. doi:10.1093/toxsci/kfj011 PubMedCrossRefGoogle Scholar
  24. Hammer TA, Sandvik AK, Waldum HL (1998) Potentiating hypergastrinemic effect by the peroxisome proliferator ciprofibrate and omeprazole in the rat. Scand J Gastroenterol 33:595–599. doi:10.1080/00365529850171855 PubMedCrossRefGoogle Scholar
  25. Haughom B, Spydevold O (1992) The mechanism underlying the hypolipemic effect of perfluorooctanoic acid (PFOA), perfluorooctane sulphonic acid (PFOSA) and clofibric acid. Biochim Biophys Acta 1128:65–72PubMedGoogle Scholar
  26. Hu Wy, Jones PD, DeCoen W, King L, Fraker P, Newsted J, Giesy JP (2003) Alterations in cell membrane properties caused by perfluorinated compounds. Comp Biochem Physiol C Toxicol Pharmacol 135C:77–88CrossRefGoogle Scholar
  27. Hu W, Jones PD, Celius T, Giesy JP (2005) Identification of genes responsive to PFOS using gene expression profiling. Environ Toxicol Pharmacol 19:57–70. doi:10.1016/j.etap.2004.04.008 CrossRefGoogle Scholar
  28. Huang C-y, Wilson MW, Travis Lay L, Chow CK, Robertson LW, Glauert HP (1994) Increased 8-hydroxydeoxyguanosine in hepatic DNA of rats treated with the peroxisome proliferators ciprofibrate and perfluorodecanoic acid. Cancer Lett 87:223–228. doi:10.1016/0304-3835(94)90226-7 PubMedCrossRefGoogle Scholar
  29. Kannan K, Corsolini S, Falandysz J, Fillmann G, Kumar KS, Loganathan BG, Mohd MA, Olivero J, Van Wouwe N, Yang JH, Aldous KM (2004) Perfluorooctanesulfonate and related fluorochemicals in human blood from several countries. Environ Sci Technol 38:4489–4495. doi:10.1021/es0493446 PubMedCrossRefGoogle Scholar
  30. Kärrman A, Mueller JF, van Bavel B, Harden F, Toms LM, Lindström G (2006a) Levels of 12 perfluorinated chemicals in pooled australian serum, collected 2002–2003, in relation to age, gender, and region. Environ Sci Technol 40:3742–3748. doi:10.1021/es060301u PubMedCrossRefGoogle Scholar
  31. Kärrman A, van Bavel B, Järnberg U, Hardell L, Lindström G (2006b) Perfluorinated chemicals in relation to other persistent organic pollutants in human blood. Chemosphere 64:1582–1591. doi:10.1016/j.chemosphere.2005.11.040 PubMedCrossRefGoogle Scholar
  32. Kissa E (2001) Fluorinated surfactants and repellents (Surfactant Science Series, vol 97). Marcel Dekker, New YorkGoogle Scholar
  33. Lau C, Thibodeaux JR, Hanson RG, Rogers JM, Grey BE, Stanton ME, Butenhoff JL, Stevenson LA (2003) Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. II: postnatal evaluation. Toxicol Sci 74:382–392. doi:10.1093/toxsci/kfg122 PubMedCrossRefGoogle Scholar
  34. Lau C, Anitole K, Hodes C, Lai D, Pfahles-Hutchens A, Seed J (2007) Perfluoroalkyl acids: a review of monitoring and toxicological findings. Toxicol Sci 99:366–394. doi:10.1093/toxsci/kfm128 PubMedCrossRefGoogle Scholar
  35. Lawrence RA, Burk RF (1976) Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Biophys Res Commun 71:952–958. doi:10.1016/0006-291X(76)90747-6 PubMedCrossRefGoogle Scholar
  36. Lehmler H-J (2005) Synthesis of environmentally relevant fluorinated surfactants—a review. Chemosphere 58:1471–1496. doi:10.1016/j.chemosphere.2004.11.078 PubMedCrossRefGoogle Scholar
  37. Lehmler H-J, Xie W, Bothun GD, Bummer PM, Knutson BL (2006) Mixing of perfluorooctanesulfonic acid (PFOS) potassium salt with dipalmitoyl phosphatidylcholine (DPPC). Colloids Surf B 51:25–29. doi:10.1016/j.colsurfb.2006.05.013 CrossRefGoogle Scholar
  38. Lehmler H-J, Rao VVVNSR, Nauduri D, Vargo JD, Parkin S (2007) Synthesis and structure of environmentally relevant perfluorinated sulfonamides. J Fluor Chem 128:595–607. doi:10.1016/j.jfluchem.2007.01.013 PubMedCrossRefGoogle Scholar
  39. Lei R, Wu C, Yang B, Ma H, Shi C, Wang Q, Wang Q, Yuan Y, Liao M (2008) Integrated metabolomic analysis of the nano-sized copper particle-induced hepatotoxicity and nephrotoxicity in rats: a rapid in vivo screening method for nanotoxicity. Toxicol Appl Pharmacol 232:292–301. doi:10.1016/j.taap.2008.06.026 PubMedCrossRefGoogle Scholar
  40. Liu C, Yu K, Shi X, Wang J, Lam PKS, Wu RSS, Zhou B (2007) Induction of oxidative stress and apoptosis by PFOS and PFOA in primary cultured hepatocytes of freshwater tilapia (Oreochromis niloticus). Aquat Toxicol 82:135–143. doi:10.1016/j.aquatox.2007.02.006 PubMedCrossRefGoogle Scholar
  41. Lowry OH, Rosebrough NJ, Farr L, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  42. Luebker DJ, Hansen KJ, Bass NM, Butenhoff JL, Seacat AM (2002) Interactions of fluorochemicals with rat liver fatty acid-binding protein. Toxicology 176:175–185. doi:10.1016/S0300-483X(02)00081-1 PubMedCrossRefGoogle Scholar
  43. Maestri L, Negri S, Ferrari M, Ghittori S, Fabris F, Danesino P, Imbriani M (2006) Determination of perfluorooctanoic acid and perfluorooctanesulfonate in human tissues by liquid chromatography/single quadrupole mass spectrometry. Rapid Commun Mass Spectrom 20:2728–2734. doi:10.1002/rcm.2661 PubMedCrossRefGoogle Scholar
  44. Maloney EK, Waxman DJ (1999) trans-Activation of PPARα and PPARγ by structurally diverse environmental chemicals. Toxicol Appl Pharmacol 161:209–218. doi:10.1006/taap.1999.8809 PubMedCrossRefGoogle Scholar
  45. Manning RO, Bruckner JV, Mispagel ME, Bowen JM (1991) Metabolism and disposition of sulfluramid, a unique polyfluorinated insecticide, in the rat. Drug Metab Dispos 19:205–211PubMedGoogle Scholar
  46. Martin MT, Brennan RJ, Hu W, Ayanoglu E, Lau C, Ren H, Wood CR, Corton JC, Kavlock RJ, Dix DJ (2007) Toxicogenomic study of triazole fungicides and perfluoroalkyl acids in rat livers predicts toxicity and categorizes chemicals based on mechanisms of toxicity. Toxicol Sci 97:595–613. doi:10.1093/toxsci/kfm065 PubMedCrossRefGoogle Scholar
  47. Nakayama K, Iwata H, Tao L, Kannan K, Imoto M, Kim E-Y, Tashiro K, Tanabe S (2008) Potential effects of perfluorinated compounds in common cormorants from Lake Biwa, Japan: an implication from the hepatic gene expression profiles by microarray. Environ Toxicol Chem 27:2378–2386. doi:10.1897/07-614.1 PubMedCrossRefGoogle Scholar
  48. Nicholson JK, Lindon JC, Holmes E (1999) “Metabonomics”: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29:1181–1189. doi:10.1080/004982599238047 PubMedCrossRefGoogle Scholar
  49. Nicholson JK, Connelly J, Lindon JC, Holmes E (2002) Innovation: Metabonomics: a platform for studying drug toxicity and gene function. Nat Rev Drug Discov 1:153–161. doi:10.1038/nrd728 PubMedCrossRefGoogle Scholar
  50. O’Brien TM, Wallace KB (2004) Mitochondrial permeability transition as the critical target of N-acetyl perfluorooctane sulfonamide toxicity in vitro. Toxicol Sci 82:333–340. doi:10.1093/toxsci/kfh244 PubMedCrossRefGoogle Scholar
  51. O’Brien ML, Spear BT, Glauert HP (2005) Role of oxidative stress in peroxisome proliferator-mediated carcinogenesis. Crit Rev Toxicol 35:61–88. doi:10.1080/10408440590905957 PubMedCrossRefGoogle Scholar
  52. Olsen GW, Church TR, Miller JP, Burris JM, Hansen KJ, Lundberg JK, Armitage JB, Herron RM, Medhdizadehkashi Z, Nobiletti JB, O’Neill EM, Mandel JH, Zobel LR (2003a) Perfluorooctanesulfonate and other fluorochemicals in the serum of American Red Cross adult blood donors. Environ Health Perspect 111:1892–1901PubMedGoogle Scholar
  53. Olsen GW, Hansen KJ, Stevenson LA, Burris JM, Mandel JH (2003b) Human donor liver and serum concentrations of perfluorooctanesulfonate and other perfluorochemicals. Environ Sci Technol 37:888–891. doi:10.1021/es020955c PubMedCrossRefGoogle Scholar
  54. Olsson U, Sundberg C, Andersson K, De Pierre JW (1993) Further studies on the involvement of selenium in peroxisome proliferation in rat liver. Comparison of effects of clofibric acid and perfluorooctanoic acid and the pharmacokinetics of [14C]clofibrate. Biochem Pharmacol 46:1805–1810. doi:10.1016/0006-2952(93)90586-L Google Scholar
  55. Panaretakis T, Shabalina IG, Grander D, Shoshan MC, DePierre JW (2001) Reactive oxygen species and mitochondria mediate the induction of apoptosis in human hepatoma HepG2 cells by the rodent peroxisome proliferator and hepatocarcinogen, perfluorooctanoic acid. Toxicol Appl Pharmacol 173:56–64. doi:10.1006/taap.2001.9159 PubMedCrossRefGoogle Scholar
  56. Paul AG, Jones KC, Sweetman AJ (2009) A first global production, emission, and environmental inventory for perfluorooctane sulfonate. Environ Sci Technol 43:386–392. doi:10.1021/es802216n PubMedCrossRefGoogle Scholar
  57. Peden-Adams MM, EuDaly JG, Dabra S, EuDaly A, Heesemann L, Smythe J, Keil DE (2007) Suppression of humoral immunity following exposure to the perfluorinated insecticide sulfluramid. J Toxicol Environ Health A 70:1130–1141. doi:10.1080/15287390701252733 PubMedCrossRefGoogle Scholar
  58. Poosch MS, Yamazaki RK (1986) Determination of peroxisomal fatty acyl-CoA oxidase activity using a lauroyl-CoA-based fluorometric assay. Biochim Biophys Acta 884:585–593PubMedGoogle Scholar
  59. Probst RJ, Lim JM, Bird DN, Pole GL, Sato AK, Claybaugh JR (2006) Gender differences in the blood volume of conscious Sprague–Dawley rats. J Am Assoc Lab Anim Sci 45:49–52PubMedGoogle Scholar
  60. Rosen MB, Abbott BD, Wolf DC, Corton JC, Wood CR, Schmid JE, Das KP, Zehr RD, Blair ET, Lau C (2008) Gene profiling in the livers of wild-type and PPARa-null mice exposed to perfluorooctanoic acid. Toxicol Pathol 36:592–607. doi:10.1177/0192623308318208 PubMedCrossRefGoogle Scholar
  61. Schnellmann RG (1990) The cellular effects of a unique pesticide sulfluramid (N-ethylperfluorooctane sulfonamide) on rabbit renal proximal tubules. Toxicol In Vitro 4:71–74. doi:10.1016/0887-2333(90)90012-I CrossRefGoogle Scholar
  62. Schnellmann RG, Manning RO (1990) Perfluorooctane sulfonamide: a structurally novel uncoupler of oxidative phosphorylation. Biochim Biophys Acta 1016:344–348. doi:10.1016/0005-2728(90)90167-3 PubMedCrossRefGoogle Scholar
  63. Seacat AM, Thomford PJ, Hansen KJ, Olsen GW, Case MT, Butenhoff JL (2002) Subchronic toxicity studies on perfluorooctanesulfonate potassium salt in cynomolgus monkeys. Toxicol Sci 68:249–264. doi:10.1093/toxsci/68.1.249 PubMedCrossRefGoogle Scholar
  64. Seacat AM, Thomford PJ, Hansen KJ, Clemen LA, Eldridge SR, Elcombe CR, Butenhoff JL (2003) Sub-chronic dietary toxicity of potassium perfluorooctanesulfonate in rats. Toxicology 183:117–131. doi:10.1016/S0300-483X(02)00511-5 PubMedCrossRefGoogle Scholar
  65. Sheikh K, Camejo G, Lanne B, Halvarsson T, Landergren MR, Oakes ND (2007) Beyond lipids, pharmacological PPARα activation has important effects on amino acid metabolism as studied in the rat. Am J Physiol Endocrinol Metab 292:E1157–E1165. doi:10.1152/ajpendo.00254.2006 PubMedCrossRefGoogle Scholar
  66. Shipley JM, Hurst CH, Tanaka SS, DeRoos FL, Butenhoff JL, Seacat AM, Waxman DJ (2004) Trans-activation of PPARα and induction of PPARα target genes by perfluorooctane-based chemicals. Toxicol Sci 80:151–160. doi:10.1093/toxsci/kfh130 PubMedCrossRefGoogle Scholar
  67. Sohlenius AK, Eriksson AM, Hogstrom C, Kimland M, DePierre JW (1993) Perfluorooctane sulfonic acid is a potent inducer of peroxisomal fatty acid beta-oxidation and other activities known to be affected by peroxisome proliferators in mouse liver. Pharmacol Toxicol 72:90–93. doi:10.1111/j.1600-0773.1993.tb00296.x PubMedCrossRefGoogle Scholar
  68. Spitz DR, Oberley LW (1989) An assay for superoxide dismutase activity in mammalian tissue homogenates. Anal Biochem 179:8–18. doi:10.1016/0003-2697(89)90192-9 PubMedCrossRefGoogle Scholar
  69. Spliethoff HM, Tao L, Shaver SM, Aldous KM, Pass KA, Kannan K, Eadon GA (2008) Use of newborn screening program blood spots for exposure assessment: declining levels of perluorinated compounds in New York State infants. Environ Sci Technol 42:5361–5367. doi:10.1021/es8006244 PubMedCrossRefGoogle Scholar
  70. Starkov AA, Wallace KB (2002) Structural determinants of fluorochemical-induced mitochondrial dysfunction. Toxicol Sci 66:244–252. doi:10.1093/toxsci/66.2.244 PubMedCrossRefGoogle Scholar
  71. Takacs ML, Abbott BD (2007) Activation of mouse and human peroxisome proliferator-activated receptors (α, β/δ, γ) by perfluorooctanoic acid and perfluorooctane sulfonate. Toxicol Sci 95:108–117. doi:10.1093/toxsci/kfl135 PubMedCrossRefGoogle Scholar
  72. Thibodeaux JR, Hanson RG, Rogers JM, Grey BE, Barbee BD, Richards JH, Butenhoff JL, Stevenson LA, Lau C (2003) Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. I: Maternal and prenatal evaluations. Toxicol Sci 74:369–381. doi:10.1093/toxsci/kfg121 PubMedCrossRefGoogle Scholar
  73. Tittlemier SA, Pepper K, Seymour C, Moisey J, Bronson R, Cao X-L, Dabeka RW (2007) Dietary exposure of Canadians to perfluorinated carboxylates and perfluorooctane sulfonate via consumption of meat, fish, fast foods, and food items prepared in their packaging. J Agric Food Chem 55:3203–3210. doi:10.1021/jf0634045 PubMedCrossRefGoogle Scholar
  74. Tomy GT, Tittlemier SA, Palace VP, Budakowski WR, Braekevelt E, Brinkworth L, Friesen K (2004) Biotransformation of N-ethyl perfluorooctanesulfonamide by rainbow trout (Onchorhynchus mykiss) liver microsomes. Environ Sci Technol 38:758–762. doi:10.1021/es034550j PubMedCrossRefGoogle Scholar
  75. Uchiyama M, Mihara M (1978) Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem 86:271–278. doi:10.1016/0003-2697(78)90342-1 PubMedCrossRefGoogle Scholar
  76. Vanden Heuvel JP, Thompson JT, Frame SR, Gillies PJ (2006) Differential activation of nuclear receptors by perfluorinated fatty acid analogs and natural fatty acids: a comparison of human, mouse, and rat peroxisome proliferator-activated receptor-α, -β, and -γ, liver X receptor-β, and retinoid X receptor-α. Toxicol Sci 92:476–489. doi:10.1093/toxsci/kfl014 CrossRefGoogle Scholar
  77. Viant MR (2007) Revealing the metabolome of animal tissues using 1H nuclear magnetic resonance spectroscopy. In: Weckwerth W (ed) Metabolomics: methods and protocols. Humana Press Inc., Totowa, pp 229–246Google Scholar
  78. Viant MR, Lyeth BG, Miller MG, Berman RF (2005) An NMR metabolomic investigation of early metabolic disturbances following traumatic brain injury in a mammalian model. NMR Biomed 18:507–516. doi:10.1002/nbm.980 PubMedCrossRefGoogle Scholar
  79. Vitayavirasuk B, Bowen JM (1999) Pharmacokinetics of sulfluramid and its metabolite desethylsulfluramid after intravenous and intraruminal administration of sulfluramid to sheep. Pestic Sci 55:719–725Google Scholar
  80. Wallace KB, Luebker DJ, Butenhoff JL, Seacat AM (2001) Perfluorooctane sulfonate and 2-(N-ethylperfluorooctanesulfonamido)-ethyl alcohol are peroxisome proliferators in rats, but not guinea pigs. Toxicologist 60:1657Google Scholar
  81. Wilson MW, Lay LT, Chow CK, Tai H-H, Robertson LW, Glauert HP (1995) Altered hepatic eicosanoid concentrations in rats treated with the peroxisome proliferators ciprofibrate and perfluorodecanoic acid. Arch Toxicol 69:491–497. doi:10.1007/s002040050203 PubMedCrossRefGoogle Scholar
  82. Xie W, Kania-Korwel I, Bummer PM, Lehmler H-J (2007) Effect of potassium perfluorooctanesulfonate, perfluorooctanoate and octanesulfonate on the phase transition of dipalmitoylphosphatidylcholine (DPPC) bilayers. Biochim Biophys Acta 1768:1299–1308. doi:10.1016/j.bbamem.2007.02.003 PubMedCrossRefGoogle Scholar
  83. Xu L, Krenitsky DM, Seacat AM, Butenhoff JL, Anders MW (2004) Biotransformation of N-ethyl-N-(2-hydroxyethyl)perfluorooctanesulfonamide by rat liver microsomes, cytosol, and slices and by expressed rat and human cytochromes P450. Chem Res Toxicol 17:767–775. doi:10.1021/tx034222x PubMedCrossRefGoogle Scholar
  84. Xu L, Krenitsky DM, Seacat AM, Butenhoff JL, Tephly TR, Anders MW (2006) N-Glucuronidation of perfluorooctanesulfonamide by human, rat, dog, and monkey liver microsomes and by expressed rat and human UDP-glucuronosyltransferases. Drug Metab Dispos 34:1406–1410. doi:10.1124/dmd.106.009399 PubMedCrossRefGoogle Scholar
  85. Yahia D, Tsukuba C, Yoshida M, Sato I, Tsuda S (2008) Neonatal death of mice treated with perfluorooctane sulfonate. J Toxicol Sci 33:219–226. doi:10.2131/jts.33.219 PubMedCrossRefGoogle Scholar
  86. Zheng L, Dong G-H, Jin Y-H, He Q-C (2009) Immunotoxic changes associated with a 7-day oral exposure to perfluorooctanesulfonate (PFOS) in adult male C57BL/6 mice. Arch Toxicol. doi:10.1007/s00204-008-0361-3 Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Wei Xie
    • 1
  • Qian Wu
    • 2
  • Izabela Kania-Korwel
    • 1
  • Job C. Tharappel
    • 3
  • Sanjay Telu
    • 1
  • Mitchell C. Coleman
    • 4
  • Howard P. Glauert
    • 3
    • 5
  • Kurunthachalam Kannan
    • 2
  • S. V. S.  Mariappan
    • 6
  • Douglas R. Spitz
    • 4
  • Jamie Weydert
    • 7
  • Hans-Joachim Lehmler
    • 1
  1. 1.Department of Occupational and Environmental Health, College of Public HealthThe University of IowaIowa CityUSA
  2. 2.Wadsworth Center, New York State Department of Health and Department of Environmental Health SciencesState University of New YorkAlbanyUSA
  3. 3.Graduate Center for Nutritional SciencesUniversity of KentuckyLexingtonUSA
  4. 4.Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer CenterThe University of IowaIowa CityUSA
  5. 5.Graduate Center for ToxicologyUniversity of KentuckyLexingtonUSA
  6. 6.Department of Chemistry, College of Liberal Arts and SciencesThe University of IowaIowa CityUSA
  7. 7.Department of Pathology, Carver College of MedicineThe University of IowaIowa CityUSA

Personalised recommendations