Skip to main content

Occupational exposure to polycyclic aromatic hydrocarbons and DNA damage by industry: a nationwide study in Germany

Abstract

Exposure to polycyclic aromatic hydrocarbons (PAH) and DNA damage were analyzed in coke oven (n = 37), refractory (n = 96), graphite electrode (n = 26), and converter workers (n = 12), whereas construction workers (n = 48) served as referents. PAH exposure was assessed by personal air sampling during shift and biological monitoring in urine post shift (1-hydroxypyrene, 1-OHP and 1-, 2 + 9-, 3-, 4-hydroxyphenanthrenes, ΣOHPHE). DNA damage was measured by 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodGuo) and DNA strand breaks in blood post shift. Median 1-OHP and ΣOHPHE were highest in converter workers (13.5 and 37.2 μg/g crea). The industrial setting contributed to the metabolite concentrations rather than the air-borne concentration alone. Other routes of uptake, probably dermal, influenced associations between air-borne concentrations and levels of PAH metabolites in urine making biomonitoring results preferred parameters to assess exposure to PAH. DNA damage in terms of 8-oxo-dGuo and DNA strand breaks was higher in exposed workers compared to referents ranking highest for graphite-electrode production. The type of industry contributed to genotoxic DNA damage and DNA damage was not unequivocally associated to PAH on the individual level most likely due to potential contributions of co-exposures.

This is a preview of subscription content, access via your institution.

References

  1. Angerer J, Mannschreck C, Gündel J (1997) Occupational exposure to polycyclic aromatic hydrocarbons in a graphite-electrode producing plant: biological monitoring of 1-hydroxypyrene and monohydroxylated metabolites of phenanthrene. Int Arch Occup Environ Health 69:323–331

    PubMed  Article  CAS  Google Scholar 

  2. Boffetta P, Jourenkova N, Gustavsson P (1997) Cancer risk from occupational and environmental exposure to polycyclic aromatic hydrocarbons. Cancer Causes Control 8:444–472

    PubMed  Article  CAS  Google Scholar 

  3. Boström CE, Gerde P, Hanberg A et al (2002) Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air. Environ Health Perspect 110(Suppl 3):451–488

    PubMed  Google Scholar 

  4. Buchet JP, Gennart JP, Mercado-Calderon F et al (1992) Evaluation of exposure to polycyclic aromatic hydrocarbons in a coke production and a graphite electrode manufacturing plant: assessment of urinary excretion of 1-hydroxypyrene as a biological indicator of exposure. Br J Ind Med 49:761–768

    PubMed  CAS  Google Scholar 

  5. Burczynski ME, Lin HK, Penning TM (1999) Isoform-specific induction of a human aldo-keto reductase by polycyclic aromatic hydrocarbons (PAH), electrophiles, and oxidative stress: implications for the alternative pathway of PAH activation catalyzed by human dihydrodiol dehydrogenase. Cancer Res 59:607–614

    PubMed  CAS  Google Scholar 

  6. Burlinson B, Tice RR, Speit G et al (2007) In vivo comet assay workgroup, part of the fourth international workgroup on genotoxicity testing. Fourth international workgroup on genotoxicity testing: results of the in vivo Comet assay workgroup. Mutat Res 627:31–35

    PubMed  CAS  Google Scholar 

  7. Chen ML, Mao IF, Wu MT et al (1999) Assessment of coke oven emissions exposure among coking workers. Am Ind Hyg Assoc J 60:105–110

    PubMed  CAS  Google Scholar 

  8. Courter LA, Musafia-Jeknic T, Fischer K et al (2007) Urban dust particulate matter alters PAH-induced carcinogenesis by inhibition of CYP1A1 and CYP1B1. Toxicol Sci 95:63–73

    PubMed  Article  CAS  Google Scholar 

  9. dell’Omo M, Muzi G, Marchionna G et al (1998) Preventive measures reduce exposure to polycyclic aromatic hydrocarbons at a graphite electrode plant. Occup Environ Med 55:401–406

    PubMed  Article  Google Scholar 

  10. Dipple A, Khan QA, Page JE et al (1999) DNA reactions, mutagenic action and stealth properties of polycyclic aromatic hydrocarbon carcinogens. Int J Oncol 14:103–111

    PubMed  CAS  Google Scholar 

  11. European Standards Committee on Oxidative DNA Damage (ESCODD) (2003) Measurement of DNA oxidation in human cells by chromatographic and enzymic methods. Free Radic Biol Med 34:1089–1099

    Article  CAS  Google Scholar 

  12. Floyd RA, Watson JJ, Wong PK et al (1986) Hydroxyl free radical adduct of deoxyguanosine: sensitive detection and mechanisms of formation. Free Radic Res Commun 1:163–172

    PubMed  Article  CAS  Google Scholar 

  13. Grimmer G, Dettbarn G, Jacob J (1993) Biomonitoring of polycyclic aromatic hydrocarbons in highly exposed coke plant workers by measurement of urinary phenanthrene and pyrene metabolites (phenols and dihydrodiols). Int Arch Occup Environ Health 65:189–199

    PubMed  Article  CAS  Google Scholar 

  14. Gündel J, Schaller KH, Angerer J (2000) Occupational exposure to polycyclic aromatic hydrocarbons in a fireproof stone producing plant: biological monitoring of 1-hydroxypyrene, 1-, 2-, 3- and 4-hydroxyphenanthrene, 3-hydroxybenz(a)anthracene and 3-hydroxybenzo(a)pyrene. Int Arch Occup Environ Health 73:270–274

    PubMed  Article  Google Scholar 

  15. Hecht SS (2002) Human urinary carcinogen metabolites: biomarkers for investigating tobacco and cancer. Carcinogenesis 23:907–922

    PubMed  Article  CAS  Google Scholar 

  16. Human Biomonitoring Commission (HBM) (2005) 1-Hydroxypyrene in urine as an indicator of internal exposure to polycyclic aromatic hydrocarbons (PAH)—reference level of 1-hydroxypyrene in urine (in German). Bundesgesundheitsbl Gesundheitsforsch Gesundheitsschutz 48:1194–1206

    Article  Google Scholar 

  17. IARC (1984) Industrial exposures in aluminium production, coal gasification, coal production, and iron and steel founding. IARC Monogr Eval Carcinog Risks Hum 34

  18. IARC (2009) Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures. IARC Monogr Eval Carcinog Risks Hum 92 (in press)

  19. Jongeneelen FJ (1997) Methods for routine biological monitoring of carcinogenic PAH-mixtures. Sci Total Environ 199:141–149

    PubMed  Article  CAS  Google Scholar 

  20. Klaunig JE, Xu Y, Isenberg JS et al (1998) The role of oxidative stress in chemical carcinogenesis. Environ Health Perspect 106(Suppl 1):289–295

    PubMed  Article  CAS  Google Scholar 

  21. Leng S, Cheng J, Pan Z et al (2004) Associations between XRCC1 and ERCC2 polymorphisms and DNA damage in peripheral blood lymphocyte among coke oven workers. Biomarkers 9:395–406

    PubMed  Article  CAS  Google Scholar 

  22. Leng S, Cheng J, Zhang L et al (2005) The association of XRCC1 haplotypes and chromosomal damage levels in peripheral blood lymphocyte among coke-oven workers. Cancer Epidemiol Biomarkers Prev 14:1295–1301

    PubMed  Article  CAS  Google Scholar 

  23. Lin YC, Pan CH, Chen CJ et al (2006) Associations between exposure to polycyclic aromatic hydrocarbons and temporal change of urinary 1-hydroxypyrene levels in Taiwanese coke-oven workers. J Occup Environ Med 48:930–936

    PubMed  Article  CAS  Google Scholar 

  24. Lintelmann J, Angerer J (1999) PAH metabolites. In: Angerer J, Schaller KH (eds) Analysis of hazardous substances in biological materials, vol 6. Wiley-VCH, Weinheim, pp 163–187

    Google Scholar 

  25. Lu PL, Chen ML, Mao IF (2002) Urinary 1-hydroxypyrene levels in workers exposed to coke oven emissions at various locations in a coke oven plant. Arch Environ Health 57:255–261

    PubMed  CAS  Article  Google Scholar 

  26. Luch A (2005) Nature and nurture—lessons from chemical carcinogenesis. Nat Rev Cancer 5:113–125

    PubMed  Article  CAS  Google Scholar 

  27. Marczynski B, Preuss R, Mensing T et al (2005) Genotoxic risk assessment in white blood cells of occupationally exposed workers before and after alteration of the polycyclic aromatic hydrocarbon (PAH) profile in the production material: comparison with PAH air and urinary metabolite levels. Int Arch Occup Environ Health 78:97–108

    PubMed  Article  CAS  Google Scholar 

  28. Marczynski B, Raulf-Heimsoth M, Preuss R et al (2006) Assessment of DNA damage in WBCs of workers occupationally exposed to fumes and aerosols of bitumen. Cancer Epidemiol Biomarkers Prev 15:645–651

    PubMed  Article  CAS  Google Scholar 

  29. Merlo DF, Garattini S, Gelatti U et al (2004) A mortality cohort study among workers in a graphite electrode production plant in Italy. Occup Environ Med 61:e9

    PubMed  Article  CAS  Google Scholar 

  30. Moretti M, dell’Omo M, Villarini M et al (2007) Primary DNA damage and genetic polymorphisms for CYP1A1, EPHX and GSTM1 in workers at a graphite electrode manufacturing plant. BMC Public Health 7:270–279

    PubMed  Article  CAS  Google Scholar 

  31. NIOSH (1994) Polynuclear aromatic hydrocarbons by HPLC. In: Casinelli ME, O’Connor PE (eds) NIOSH manual of analytical methods, 4th edn. National Institute for Occupational Safety and Health, Washington

    Google Scholar 

  32. Östling O, Johanson KJ (1984) Microelectrophoretic study of radiation-induced DNA damages in individual mammalian cells. Biochem Biophys Res Commun 123:291–298

    PubMed  Article  Google Scholar 

  33. Park JH, Gelhaus S, Vedantam S et al (2008a) The pattern of p53 mutations caused by PAH o-quinones is driven by 8-oxo-dGuo formation while the spectrum of mutations is determined by biological selection for dominance. Chem Res Toxicol 21:1039–1049

    PubMed  Article  CAS  Google Scholar 

  34. Park JH, Mangal D, Tacka KA et al (2008b) Evidence for the aldo-keto reductase pathway of polycyclic aromatic trans-dihydrodiol activation in human lung A549 cells. Proc Natl Acad Sci USA 105:6846–6851

    PubMed  Article  CAS  Google Scholar 

  35. Pesch B, Kappler M, Straif K et al (2007) Dose-response modeling of occupational exposure to polycyclic aromatic hydrocarbons with biomarkers of exposure and effect. Cancer Epidemiol Biomarkers Prev 16:1863–1873

    PubMed  Article  CAS  Google Scholar 

  36. Pouget JP, Ravanat JL, Douki T et al (1999) Measurement of DNA base damage in cells exposed to low doses of gamma-radiation: comparison between the HPLC-EC and comet assays. Int J Radiat Biol 75:51–58

    PubMed  Article  CAS  Google Scholar 

  37. Qiu L, Leng S, Wang Z et al (2007) Path analysis of biomarkers of exposure and early biological effects among coke-oven workers exposed to polycyclic aromatic hydrocarbons. Cancer Epidemiol Biomarkers Prev 16:1193–1199

    PubMed  Article  CAS  Google Scholar 

  38. Rihs HP, Pesch B, Kappler M et al (2005) Occupational exposure to polycyclic aromatic hydrocarbons in German industries: association between exogenous exposure and urinary metabolites and its modulation by enzyme polymorphisms. Toxicol Lett 157:241–255

    PubMed  Article  CAS  Google Scholar 

  39. Schaller KH, Angerer J, Drexler H (2002) Quality assurance of biological monitoring in occupational and environmental medicine. J Chromatogr B Analyt Technol Biomed Life Sci 778:403–417

    PubMed  Article  CAS  Google Scholar 

  40. Scherer G, Meger-Kossien I, Angerer J (2001) Cotinine. In: Angerer J, Schaller KH et al (eds) Analysis of hazardous substances in biological materials, vol 7. Wiley-VCH, Weinheim, pp 171–189

    Google Scholar 

  41. Seidel A, Spickenheuer A, Straif K et al (2008) New biomarkers of occupational exposure to polycyclic aromatic hydrocarbons. J Toxicol Environ Health A 71:734–745

    PubMed  Article  CAS  Google Scholar 

  42. Seike K, Murata M, Hirakawa K et al (2004) Oxidative DNA damage induced by benz[a]anthracene dihydrodiols in the presence of dihydrodiol dehydrogenase. Chem Res Toxicol 17:1445–1451 2004

    PubMed  Article  CAS  Google Scholar 

  43. Serdar B, Waidyanatha S, Zheng Y et al (2003) Simultaneous determination of urinary 1- and 2-naphthols, 3- and 9-phenanthrols, and 1-pyrenol in coke oven workers. Biomarkers 8:93–109

    PubMed  Article  CAS  Google Scholar 

  44. Singh NP, McCoy MT, Tice RR et al (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191

    PubMed  Article  CAS  Google Scholar 

  45. Straif K, Baan R, Grosse Y et al (2005) Carcinogenicity of polycyclic aromatic hydrocarbons. Lancet Oncol 6:931–932

    PubMed  Article  Google Scholar 

  46. Strunk P, Ortlepp K, Heinz H et al (2002) Ambient and biological monitoring of coke plant workers—determination of exposure to polycyclic aromatic hydrocarbons. Int Arch Occup Environ Health 75:354–358

    PubMed  Article  CAS  Google Scholar 

  47. Taussky HH (1954) A micro-colometric determination of creatinine in urine by the Jaffé reaction. J Biol Chem 208:853–861

    PubMed  CAS  Google Scholar 

  48. Thielen S, Baum M, Hoffmann M et al (2006) Genotoxicity of glycidamide in comparison to (+/−)-anti-benzo[a]pyrene-7, 8-dihydrodiol-9, 10-epoxide and alpha-acetoxy-N-nitroso-diethanolamine in human blood and in mammalian V79-cells. Mol Nutr Food Res 50:430–436

    PubMed  Article  CAS  Google Scholar 

  49. Van Delft JH, Steenwinkel MS, van Asten JG et al (2001) Biological monitoring the exposure to polycyclic aromatic hydrocarbons of coke oven workers in relation to smoking and genetic polymorphisms for GSTM1 and GSTT1. Ann Occup Hyg 45:395–408

    PubMed  Google Scholar 

  50. Wu MT, Simpson CD, Christiani DC et al (2002) Relationship of exposure to coke-oven emissions and urinary metabolites of benzo(a)pyrene and pyrene in coke-oven workers. Cancer Epidemiol Biomarkers Prev 11:311–314

    PubMed  CAS  Google Scholar 

  51. Wu MT, Pan CH, Huang YL et al (2003) Urinary excretion of 8-hydroxy-2-deoxyguanosine and 1-hydroxypyrene in coke-oven workers. Environ Mol Mutagen 42:98–105

    PubMed  Article  CAS  Google Scholar 

  52. Yang X, Zheng J, Bai Y et al (2007) Using lymphocyte and plasma Hsp70 as biomarkers for assessing coke oven exposure among steel workers. Environ Health Perspect 115:1573–1577

    PubMed  CAS  Article  Google Scholar 

  53. Zhang J, Ichiba M, Feng Y et al (2000) Aromatic DNA adducts in coke-oven workers, in relation to exposure, lifestyle and genetic polymorphism of metabolic enzymes. Int Arch Occup Environ Health 73:127–135

    PubMed  Article  CAS  Google Scholar 

  54. Zhang J, Ichiba M, Hanaoka T et al (2003) Leukocyte 8-hydroxydeoxyguanosine and aromatic DNA adduct in coke-oven workers with polycyclic aromatic hydrocarbon exposure. Int Arch Occup Environ Health 76:499–504

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank all workers and companies for their help and support. Additional thanks are due to Dr. Holger M. Koch, Dr. Sabine Plöttner, and Dr. Rosemarie Marchan for internal review and editorial comments prior submission. This work was core-supported by the German Social Accident Insurance (DGUV).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Heiko Udo Käfferlein.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Marczynski, B., Pesch, B., Wilhelm, M. et al. Occupational exposure to polycyclic aromatic hydrocarbons and DNA damage by industry: a nationwide study in Germany. Arch Toxicol 83, 947–957 (2009). https://doi.org/10.1007/s00204-009-0444-9

Download citation

Keywords

  • Polycyclic aromatic hydrocarbons
  • Occupational exposure
  • DNA damage
  • Biological monitoring
  • PAH industries