Advertisement

Archives of Toxicology

, Volume 83, Issue 4, pp 357–362 | Cite as

Vitamin D metabolism impairment in the rat’s offspring following maternal exposure to 137cesium

  • E. Tissandie
  • Y. Guéguen
  • J. M. A. Lobaccaro
  • L. Grandcolas
  • S. Grison
  • J. Aigueperse
  • M. Souidi
Organ Toxicity and Mechanisms

Abstract

Previous works clearly showed that chronic contamination by 137cesium alters vitamin D metabolism. Since children are known to be a high-risk group for vitamin D metabolism disorders, effects of 137Cs on vitamin D biosynthetic pathway were investigated in newborn rats. The experiments were performed in 21-day-old male offspring of dams exposed to 137Cs in their drinking water at a dose of 6,500 Bq/l (150 Bq/rat/day) during the lactation period. Significant modifications of blood calcium (−7%, P < 0.05), phosphate (+80%, P < 0.01) and osteocalcin (−25%, P < 0.05) levels were observed in contaminated offspring, associated with an increase of blood vitamin D3 (+25%, P < 0.01). Besides, decreased expression levels of cyp2r1 and cyp27b1 (−26 and −39%, respectively, P < 0.01) were measured in liver and kidney suggesting a physiological adaptation in response to the rise in vitamin D level. Expressions of vdr, ecac1, cabp-d28k, ecac2 and cabp-9k involved in renal and intestinal calcium transport were unaffected. Altogether, these data show that early exposure to post-accidental doses of 137Cs induces the alteration of vitamin D metabolism, associated with a dysregulation of mineral homeostasis.

Keywords

137Cesium Chronic contamination Cytochrome P450 Vitamin D3 Maternal exposure 

Abbreviations

1,25(OH)2D3

1α,25-Dihydroxyvitamin D3

25(OH)D3

25-Hydroxyvitamin D3

137Cs

Cesium

ALT

Alanine amino-transferase

AST

Aspartate amino-transferase

CaBP-D

Calbindin-D

CYP

Cytochrome P450

ECaC

Epithelial Ca2+ channel

PTH

Parathyroid hormone

RXR

Retinoid X receptor

VDR

Vitamin D receptor

Notes

Acknowledgments

The authors thank T. Loiseau and C. Baudelin for their assistance during animal’s exposure and experimentation. This study was part of the ENVIRHOM research program supported by the Institute for Radioprotection and Nuclear Safety (IRSN).

References

  1. Anderson PH, O’Loughlin PD, May BK, Morris HA (2003) Quantification of mRNA for the vitamin D metabolizing enzymes CYP27B1 and CYP24 and vitamin D receptor in kidney using real-time reverse transcriptase-polymerase chain reaction. J Mol Endocrinol 31(1):123–132PubMedCrossRefGoogle Scholar
  2. Bandazhevskaya GS, Nesterenko VB, Babenko VI, Yerkovich TV, Bandazhevsky YI (2004) Relationship between caesium (137Cs) load, cardiovascular symptoms, and source of food in ‘Chernobyl’ children—preliminary observations after intake of oral apple pectin. Swiss Med Wkly 134(49–50):725–729PubMedGoogle Scholar
  3. Brandao-Mello CE, Oliveira AR, Valverde NJ, Farina R, Cordeiro JM (1991) Clinical and hematological aspects of 137Cs: the Goiania radiation accident. Health Phys 60(1):31–39PubMedGoogle Scholar
  4. Handl J, Beltz D, Botsch W, Harb S, Jakob D, Michel R, Romantschuk LD (2003) Evaluation of radioactive exposure from 137Cs in contaminated areas of Northern Ukraine. Health Phys 84(4):502–517PubMedCrossRefGoogle Scholar
  5. Johansson L, Björeland A, Agren G (1998) Tranfer of 137Cs to infants via human breast milk. Radiat Prot Dosimetry 79(1–4):165–167Google Scholar
  6. Kharchenko VP, Rassokhin BM, Zubovskii GA (2001) [Value of bone densitometry in the determination of vertebral mineral density in participants of the clean-up after Chernobyl accident]. Med Tr Prom Ekol (2):29–32Google Scholar
  7. Kutuzova GD, Deluca HF (2004) Gene expression profiles in rat intestine identify pathways for 1, 25-dihydroxyvitamin D(3) stimulated calcium absorption and clarify its immunomodulatory properties. Arch Biochem Biophys 432(2):152–166PubMedCrossRefGoogle Scholar
  8. Leggett RW, Williams LR, Melo DR, Lipsztein JL (2003) A physiologically based biokinetic model for cesium in the human body. Sci Total Environ 317(1–3):235–255PubMedCrossRefGoogle Scholar
  9. Likhtarov I, Kovgan L, Vavilov S, Chepurny M, Bouville A, Luckyanov N, Jacob P, Voilleque P, Voigt G (2005) Post-Chornobyl thyroid cancers in Ukraine. Report 1: estimation of thyroid doses. Radiat Res 163(2):125–136PubMedCrossRefGoogle Scholar
  10. Messiha FS (1988) Maternal cesium chloride ingestion and the newborn. Neurosci Biobehav Rev 12(3–4):209–213PubMedCrossRefGoogle Scholar
  11. Moon YJ, Lee AK, Chung HC, Kim EJ, Kim SH, Lee DC, Lee I, Kim SG, Lee MG (2003) Effects of acute renal failure on the pharmacokinetics of chlorzoxazone in rats. Drug Metab Dispos 31(6):776–784PubMedCrossRefGoogle Scholar
  12. Nikula KJ, Muggenburg BA, Griffith WC, Carlton WW, Fritz TE, Boecker BB (1996) Biological effects of 137CsCl injected in beagle dogs of different ages. Radiat Res 146(5):536–547PubMedCrossRefGoogle Scholar
  13. Pasanen M, Lang S, Kojo A, Kosma VM (1995) Effects of simulated nuclear fuel particles on the histopathology and CYP enzymes in the rat lung and liver. Environ Res 70(2):126–133PubMedCrossRefGoogle Scholar
  14. Ropenga A, Chapel A, Vandamme M, Griffiths NM (2004) Use of reference gene expression in rat distal colon after radiation exposure: a caveat. Radiat Res 161(5):597–602PubMedCrossRefGoogle Scholar
  15. Rozhinskaia L, Marova EI, Rassokhin BM, Purtova GS, Bukhman AI, Oganov VS, Rakhmanov AS, Bakulin AV, Rodionova SS, Mishchenko BP (1994) Osteopenic syndrome in liquidators of the aftereffects of the accident at the Chernobyl power plant. Probl Endokrinol (Mosk) 40(4):24–27Google Scholar
  16. Shevchenko AS, Kobialko VO, Shevchenko TS, Lazarev NM, Astasheva NP, Aleksakhin RM (1993) Modification of Ca2+ metabolism in the blood cells of cattle with radiation-induced thyroid disorder after the Chernobyl nuclear power plant accident. Radiats Biol Radioecol 33(6):775–782PubMedGoogle Scholar
  17. Souidi M, Gueguen Y, Linard C, Dudoignon N, Grison S, Baudelin C, Marquette C, Gourmelon P, Aigueperse J, Dublineau I (2005) In vivo effects of chronic contamination with depleted uranium on CYP3A and associated nuclear receptors PXR and CAR in the rat. Toxicology 214(1–2):113–122PubMedCrossRefGoogle Scholar
  18. Stojadinovic S, Jovanovic M (1966) Activity of transaminases in the rat serum after internal contamination with 137Cs and 90Sr. Strahlentherapie 131(4):633–636PubMedGoogle Scholar
  19. Sumner D (2007) Health effects resulting from the Chernobyl accident. Med Confl Surviv 23(1):31–45PubMedCrossRefGoogle Scholar
  20. Takatsuji T, Sato H, Takada J, Endo S, Hoshi M, Sharifov VF, Veselkina II, Pilenko IV, Kalimullin WA, Masyakin VB, Kovalev AI, Yoshikawa I, Okajima S (2000) Relationship between the 137Cs whole-body counting results and soil and food contamination in farms near Chernobyl. Health Phys 78(1):86–89PubMedCrossRefGoogle Scholar
  21. Thornberg C, Mattsson S (2000) Increased 137Cs metabolism during pregnancy. Health Phys 78(5):502–506PubMedCrossRefGoogle Scholar
  22. Tissandie E, Gueguen Y, Lobaccaro JM, Aigueperse J, Gourmelon P, Paquet F, Souidi M (2006a) Chronic contamination with 137Cesium affects Vitamin D3 metabolism in rats. Toxicology 225(1):75–80PubMedCrossRefGoogle Scholar
  23. Tissandie E, Gueguen Y, Lobaccaro JM, Paquet F, Aigueperse J, Souidi M (2006b) Effects of depleted uranium after short-term exposure on vitamin D metabolism in rat. Arch Toxicol 80(8):473–480PubMedCrossRefGoogle Scholar
  24. Titov LP, Kharitonic GD, Gourmanchuk IE, Ignatenko SI (1995) Effects of radiation on the production of immunoglobulins in children subsequent to the Chernobyl disaster. Allergy Proc 16(4):185–193PubMedCrossRefGoogle Scholar
  25. Yang L, Grey V (2006) Pediatric reference intervals for bone markers. Clin Biochem 39(6):561–568PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • E. Tissandie
    • 1
  • Y. Guéguen
    • 1
  • J. M. A. Lobaccaro
    • 2
  • L. Grandcolas
    • 1
  • S. Grison
    • 1
  • J. Aigueperse
    • 1
  • M. Souidi
    • 1
  1. 1.Radiological Protection and Human Health Division, Radiobiology and Epidemiology Department, Laboratory of Experimental ToxicologyInstitute for Radiological Protection and Nuclear SafetyFontenay-aux-Roses CedexFrance
  2. 2.Compared Physiology and Molecular EndocrinologyUMR Université Blaise Pascal-CNRS 6547Aubière CedexFrance

Personalised recommendations