Abstract
Mercury and aluminum are considered to be neurotoxic metals, and they are often connected with the onset of neurodegenerative diseases. In this study, mercuric mercury, methylmercury and aluminum were studied in three different cell lines of neural origin. To evaluate the effects, mitochondrial cytotoxicity and apoptosis induced by the metals were measured after various incubation times. SH-SY5Y neuroblastoma, U 373MG glioblastoma, and RPE D407 retinal pigment epithelial cells were subcultured to appropriate cell culture plates and 0.01–1,000 µM concentrations of methylmercury, mercuric and aluminum chloride were added into the growth medium. In the assay measuring the mitochondrial dehydrogenase activity, WST-1, the cultures were exposed for 15 min, 24 or 48 h before measurement. Cells were allowed to recover from the exposure in part of the study. Apoptosis induced by the metals was measured after 6-, 24- and 48-h exposure times with the determination of activated caspase 3 enzyme. Mitochondrial assays showed a clear dose-response and exposure time-response to the metals. The most toxic was methylmercury (EC50 ~0.8 µM, 48 h), and the most sensitive cell line was the neuroblastoma cell line SH-SY5Y. Furthermore, there was marked mitochondrial activation, especially in connection with aluminum and methylmercury at low concentrations. This activation may be important during the initiation of cellular processes. All the metals tested induced apoptosis, but with a different time-course and cell-line specificity. In microscopic photographs, glioblastoma cells formed fibrillary tangles, and neuroblastoma cells settled along the fibrilles in cocultures of glial and neuronal cell lines during aluminum exposure. The study emphasized the toxicity of methylmercury to neural cells and showed that aluminum alters various cellular activities.
This is a preview of subscription content, access via your institution.







References
Araragi S, Kondoh M, Kawase M, Saito S, Higashimoto M, Sato M (2003) Mercuric chloride induces apoptosis via a mitochondrial-dependent pathway in human leukemia cells. Toxicology 184:1–9
Aschner M, Aschner JL (1990) Mercury neurotoxicity: mechanisms of blood-brain barrier transport. Neurosci Biobehav Rev 14:169–176
Bakir F, Rustam H, Tikriti S, Al D, Shihristani H (1980) Clinical and epidemiological aspects of methylmercury poisoning. Postgrad Med J 56:1–10
Belletti S, Orlandini G, Vettori MV, Mutti A, Uggeri J, Scandroglio R, Alinovi R, Gatti R (2002) Time course assessment of methylmercury effects on C6 glioma cells: submicromolar concentrations induce oxidative DNA damage and apoptosis. J Neurosci Res 70:703–711
Billingsley ML, Kincaid RL (1997) Regulated phosphorylation and dephosphorylation of tau protein: effects on microtubule interaction, intracellular trafficking and neurodegeneration. Biochem J 323(Pt 3): 577–591
Brookes N, Kristt DA (1989) Inhibition of amino acid transport and protein synthesis by HgCl2 and methylmercury in astrocytes: selectivity and reversibility. J Neurochem 53:1228–1237
Calabrese EJ, Baldwin LA (2003) Toxicology rethinks its central belief. Nature 421:691–692
Campbell A, Hamai D, Bondy SC (2001) Differential toxicity of aluminum salts in human cell lines of neural origin: implications for neurodegeneration. Neurotoxicol 22:63–71
Carrier G, Brunet RC, Caza M, Bouchard M (2001) A toxicokinetic model for predicting the tissue distribution and elimination of organic and inorganic mercury following exposure to methyl mercury in animals and humans. I. Development and validation of the model using experimental data in rats. Toxicol Appl Pharmacol 171:38–49
Charleston JS, Body RL, Mottet NK, Vahter ME, Burbacher TM (1995) Autometallographic determination of inorganic mercury distribution in the cortex of the calcarine sulcus of the monkey Macaca fascicularis following long-term subclinical exposure to methylmercury and mercuric chloride. Toxicol Appl Pharmacol 132:325–333
Cheung MK, Verity MA (1983) Experimental methyl mercury neurotoxicity: similar in vivo and in vitro perturbation of brain cell-free protein synthesis. Exp Mol Pathol 38:230–242
Dare E, Götz ME, Zhivotovsky B, Manzo L, Ceccatelli S (2000) Antioxidants J811 and 17beta-estradiol protect cerebellar granule cells from methylmercury-induced apoptotic cell death. J Neurosci Res 62:557–565
Davis AA, Bernstein PS, Bok D, Turner J, Nachtigal M, Hunt RC (1995) A human retinal pigment epithelial cell line that retains epithelial characteristics after prolonged culture. Invest Ophthalmol Vis Sci 36:955–964
Driscoll CT (1985) Aluminum in acidic surface waters: chemistry, transport, and effects. Environ Health Perspect 63:93
Eto K, Oyanagi S, Itai Y, Tokunaga H, Takizawa Y, Suda I (1992) A fetal type of Minamata disease. An autopsy case report with special reference to the nervous system. Mol Chem Neuropathol 16:171–186
Fiskum G, Starkov A, Polster BM, Chinopoulos C (2003) Mitochondrial mechanisms of neural cell death and neuroprotective interventions in Parkinson’s disease. Ann N Y Acad Sci 991:111–119
Flendrig JA, Kruis H, Das HA (1976) Aluminum and dialysis dementia. Lancet 1:1235
Ghribi O, DeWitt DA, Forbes MS, Herman MM, Savory J (2001) Co-involvement of mitochondria and endoplasmic reticulum in regulation of apoptosis: changes in cytochrome c, Bcl-2 and Bax in the hippocampus of aluminum-treated rabbits. Brain Res 903:66–73
Ghribi O, Herman MM, Savory J (2002) The endoplasmic reticulum is the main site for caspase-3 activation following aluminum-induced neurotoxicity in rabbit hippocampus. Neurosci Lett 324:217–221
Goering PL, Thomas D, Rojko JL, Lucas AD (1999) Mercuric chloride-induced apoptosis is dependent on protein synthesis. Toxicol Lett 105:183–195
Goyer RA (1996a) Toxic effects of metals. Aluminum. In: Klaassen CD (ed) Casarett and Doull’s toxicology. The basic science of Poisons. McGraw-Hill, New York, pp 722–723
Goyer RA (1996b) Toxic effects of metals. Mercury. In: Klaassen CD (ed) Casarett and Doull’s toxicology. The basic science of poisons. McGraw-Hill, New York, pp 709–712
Guo GW, Liang YX (2001) Aluminum-induced apoptosis in cultured astrocytes and its effect on calcium homeostasis. Brain Res 888:221–226
Hansen CA, Yang LJ, Williamson JR (1991) Mechanisms of receptor-mediated Ca2+ signaling in rat hepatocytes. J Biol Chem 266:18573–18579
Hirsch EC, Brandel JP, Galle P, Javoy A, Agid Y (1991) Iron and aluminum increase in the substantia nigra of patients with Parkinson’s disease: an X-ray microanalysis. J Neurochem 56:446–451
InSug O, Datar S, Koch CJ, Shapiro IM, Shenker BJ (1997) Mercuric compounds inhibit human monocyte function by inducing apoptosis: evidence for formation of reactive oxygen species, development of mitochondrial membrane permeability transition and loss of reductive reserve. Toxicology 124:211–224
Issa Y, Watts DC, Duxbury AJ, Brunton PA, Watson MB, Waters CM (2003) Mercuric chloride: toxicity and apoptosis in a human oligodendroglial cell line MO3.13. Biomaterials 24:981–987
Jellinger KA, Bancher C (1998) Neuropathology of Alzheimer’s disease: a critical update. J Neural Transm Suppl 54:77–95
Julka D, Vasishta RK, Gill KD (1996) Distribution of aluminum in different brain regions and body organs of rat. Biol Trace Elem Res 52:181–192
Kawahara M, Kato M, Kuroda Y (2001) Effects of aluminum on the neurotoxicity of primary cultured neurons and on the aggregation of beta-amyloid protein. Brain Res Bull 55:211–217
Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD (1997) The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275:1132–1136
Kromidas L, Trombetta LD, Jamall IS (1990) The protective effects of glutathione against methylmercury cytotoxicity. Toxicol Lett 51
Kunimoto M (1994) Methylmercury induces apoptosis of rat cerebellar neurons in primary culture. Biochem Biophys Res Commun 204:310–317
Levesque L, Mizzen CA, McLachlan DR, Fraser PE (2000) Ligand specific effects on aluminum incorporation and toxicity in neurons and astrocytes. Brain Res 877:191–202
Lukiw WJ, Bazan NG (2000) Neuroinflammatory signaling upregulation in Alzheimer’s disease. Neurochem Res 25:1173–1184
Lund BO, Miller DM, Woods JS (1993) Studies on Hg(II)-induced H2O2 formation and oxidative stress in vivo and in vitro in rat kidney mitochondria. Biochem Pharmacol 45:2017–2024
Mannerström M, Zorn-Kruppa M, Diehl H, Engelke M, Toimela T, Mäenpää H, Huhtala A, Uusitalo H, Salminen L, Pappas P, Marselos M, Mäntylä M, Mäntylä E, Tähti H (2002) Evaluation of the cytotoxicity of selected systemic and intravitreally dosed drugs in the cultures of human pigment epithelial cell line and of pig primary retinal pigment epithelial cells. Toxicol In Vitro 16:193–200
Martin RB (1992) Aluminium speciation in biology. Ciba Found Symp 169:5–18
Miura K, Kobayashi Y, Toyoda H, Imura N (1998) Methylmercury-induced microtubule depolymerization leads to inhibition of tubulin synthesis. J Toxicol Sci 23:379–388
Miura K, Koide N, Himeno S, Nakagawa I, Imura N (1999) The involvement of microtubular disruption in methylmercury-induced apoptosis in neuronal and nonneuronal cell lines. Toxicol Appl Pharmacol 160:279–288
Nishioku T, Takai N, Miyamoto K, Murao K, Hara C, Yamamoto K, Nakanishi H (2000) Involvement of caspase 3-like protease in methylmercury-induced apoptosis of primary cultured rat cerebral microglia. Brain Res 871:160–164
Ohgoh M, Shimizu H, Ogura H, Nishizawa Y (2000) Astroglial trophic support and neuronal cell death: influence of cellular energy level on type of cell death induced by mitochondrial toxin in cultured rat cortical neurons. J Neurochem 75:925–933
Olivieri G, Brack C, Muller S, Stahelin HB, Herrmann M, Renard P, Brockhaus M, Hock C (2000) Mercury induces cell cytotoxicity and oxidative stress and increases beta-amyloid secretion and tau phosphorylation in SHSY5Y neuroblastoma cells. J Neurochem 74:231–236
Pedersen MB, Hansen JC, Mulvad G, Pedersen HS, Gregersen M, Danscher G (1999) Mercury accumulations in brains from populations exposed to high and low dietary levels of methyl mercury. Concentration, chemical form and distribution of mercury in brain samples from autopsies. Int J Circumpolar Health 58:96–107
Ponce RA, Kavanagh TJ, Mottet NK, Whittaker SG, Faustman EM (1994) Effects of methyl mercury on the cell cycle of primary rat CNS cells in vitro. Toxicol Appl Pharmacol 127:83–90
Sarafian T, Verity MA (1985) Inhibition of RNA and protein synthesis in isolated cerebellar cells by in vitro and in vivo methyl mercury. Neurochem Pathol 3:27–39
Savory J, Huang Y, Herman MM, Reyes MR, Wills MR (1995) Tau immunoreactivity associated with aluminum maltolate-induced neurofibrillary degeneration in rabbits. Brain Res 669:325–329
Savory J, Ghribi O, Forbes MS, Herman MM (2001) Aluminium and neuronal cell injury: inter-relationships between neurofilamentous arrays and apoptosis. J Inorg Biochem 87:15–19
Scott CW, Fieles A, Sygowski LA, Caputo CB (1993) Aggregation of tau protein by aluminum. Brain Res 628:77–84
Shenker BJ, Guo TL, Shapiro IM (1999) Induction of apoptosis in human T-cells by methyl mercury: temporal relationship between mitochondrial dysfunction and loss of reductive reserve. Toxicol Appl Pharmacol 157:23–35
Singer SM, Chambers CB, Newfry GA, Norlund MA, Muma NA (1997) Tau in aluminum-induced neurofibrillary tangles. Neurotoxicol 18:63–76
Suarez-Fernandez MB, Soldado AB, Sanz-Medel A, Vega JA, Novelli A, Fernandez-Sanchez MT (1999) Aluminum-induced degeneration of astrocytes occurs via apoptosis and results in neuronal death. Brain Res 835:125–136
Takai N, Nakanishi H, Tanabe K, Nishioku T, Sugiyama M, Fujiwara K, Yamamoto K (1998) Involvement of caspase-like proteinases in apoptosis of neuronal PC12 cells and primary cultured microglia induced by 6-hydroxydopamine. J Neurosci Res 54:214–222
Toimela TA, Tähti H (2001) Effects of mercuric chloride exposure on the glutamate uptake by cultured retinal pigment epithelial cells. Toxicol In Vitro 15:7–12
Ulshafer RJ, Allen CB, Rubin ML (1990) Distributions of elements in the human retinal pigment epithelium. Arch Ophthalmol 108:113–117
Vahter M, Mottet NK, Friberg L, Lind B, Shen DD, Burbacher T (1994) Speciation of mercury in the primate blood and brain following long-term exposure to methyl mercury. Toxicol Appl Pharmacol 124:221–229
WHO (1990) Methylmercury. Sources of human and environmental exposure. Environmental Health Criteria 101. World Health Organisation, Geneva, pp 24–27
WHO (1991) Inorganic mercury. Sources of human and environmental exposure. Environmental Health Criteria 118. World Health Organisation, Geneva, pp 29–33
Yasui M, Yase Y, Ota K, Garruto RM (1991) Aluminum deposition in the central nervous system of patients with amyotrophic lateral sclerosis from the Kii Peninsula of Japan. Neurotoxicol 12:615–620
Young JK (1992) Alzheimer’s disease and metal-containing glia. Med Hypotheses 38:1–4
Yumoto S, Nagai H, Imamura M, Matsuzaki H, Hayashi K, Masuda A, Kumazawa H, Ohashi H, Kobayashi K (1997) 26Al uptake and accumulation in the rat brain. Nucl Instrum Methods Phys Res B 123:279–282
Acknowledgements
We are grateful to Mrs. Maija Koskela and Mrs. Paula Helpiölä for skillful technical assistance. The study was supported by the Finnish National Technology Agency, TEKES and by the Medical Research Fund of Tampere University Hospital, Tampere, Finland.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Toimela, T., Tähti, H. Mitochondrial viability and apoptosis induced by aluminum, mercuric mercury and methylmercury in cell lines of neural origin. Arch Toxicol 78, 565–574 (2004). https://doi.org/10.1007/s00204-004-0575-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00204-004-0575-y
Keywords
- Aluminum
- Apoptosis
- Mercury
- Mitochondrial activity
- Neural cell lines