Skip to main content
Log in

Membrane-bound F420H2-dependent heterodisulfide reduction in Methanococcus voltae

  • Original paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Washed membranes prepared from H2+CO2- or formate-grown cells of Methanococcus voltae catalyzed the oxidation of coenzyme F420H2 and the reduction of the heterodisulfide (CoB–S–S–CoM) of 2-mercaptoethanesulfonate and 7-mercaptoheptanoylthreonine phosphate, which is the terminal electron acceptor of the methanogenic pathway. The reaction followed a 1:1 stoichiometry according to the equation: F420H2 + COB–S–S–CoM → F420 + CoM–SH + CoB–SH. These findings indicate that the reaction depends on a membrane-bound F420H2-oxidizing enzyme and on the heterodisulfide reductase, which remains partly membrane-bound after cell lysis. To elucidate the nature of the F420H2-oxidizing protein, washed membranes were solubilized with detergent, and the enzyme was purified by sucrose density centrifugation, anion-exchange chromatography, and gel filtration. Several lines of evidence indicate that F420H2 oxidation is catalyzed by a membrane-associated F420-reducing hydrogenase. The purified protein catalyzed the H2-dependent reduction of methyl viologen and F420. The apparent molecular mass and the subunit composition (43, 37, and 27 kDa) are almost identical to those of the F420-reducing hydrogenase that has already been purified from Mc. voltae. Moreover, the N-terminus of the 37-kDa subunit is identical to the amino acid sequence deduced from the fruG gene of the operon encoding the selenium-containing F420-reducing hydrogenase from Mc. voltae. A distinct F420H2 dehydrogenase, which is present in methylotrophic methanogens, was not found in this organism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received: 18 September 1998 / Accepted: 2 November 1998

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brodersen, J., Gottschalk, G. & Deppenmeier, U. Membrane-bound F420H2-dependent heterodisulfide reduction in Methanococcus voltae. Arch Microbiol 171, 115–121 (1999). https://doi.org/10.1007/s002030050686

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002030050686

Navigation