Skip to main content
Log in

Exploring the potential of Aspergillus wentii: secondary metabolites and biological properties

  • Review
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Fungi are of considerable importance due to their capacity to biosynthesize various secondary metabolites with bioactive properties that draw high attention in new drug discovery with beneficial uses for improving human well-being and life quality. Aspergillus genus members are widespread and cosmopolitan species with varying economic significance in the fields of industry, medicine, and agriculture. Its species are renowned for their biosynthesis of secondary metabolites, characterized by both potent biological activity and structural novelty, making them a substantial reservoir for the development of new pharmaceuticals. The current work aimed at focusing on one species of this genus, Aspergillus wentii Wehmer, including its reported secondary metabolites in the period from 1951 to November 2023. A total of 97 compounds, including nitro-compounds, terpenoids, anthraquinones, xanthones, benzamides, and glucans. A summary of their bioactivities, as well as their biosynthesis was highlighted. Additionally, the reported applications of this fungus and its enzymes have been discussed. This review offers a useful reference that can direct future research into this fungus and its active metabolites, as well as their possible pharmacological and biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1.
Fig. 4
Scheme 2.
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the review are available within the article.

Abbreviations

A549:

Human lung adenocarcinoma epithelial cell line

AKR1C1:

Aldo–keto reductase family 1 member C1

AMP:

Adenosine monophosphate

BHT:

Butylated hydroxytoluene

CCK-8:

Cell counting kit-8

CD44:

Cell surface adhesion receptor

CD:

Circular dichroism

DFT:

Density functional theory

DPPH:

1,1-Diphenyl-2-picrylhydrazyl

EGFR:

Anti-epidermal growth factor receptor

ECD:

Electronic circular dichroism

ERK:

Extracellular signal-regulated kinase

GIAO:

Gauge-independent atomic orbital

GAP:

GTPase activating protein

GC%:

Guanine-cytosine content

H446:

Human small cell lung cancer cell line

HCC:

Hepatocellular carcinoma

HDAC:

Histone deacetylase

HEK293:

Human embryonic kidney cell

HepG2:

Human hepatocellular liver carcinoma cell line

HeLa:

Human cervical epitheloid carcinoma cell line

HPLC:

High-performance liquid chromatography

Huh-7:

Human male hepatoma cell line

IC50 :

Half-maximal inhibitory concentration

IZD:

Inhibition zone diameter

JNK:

C-Jun NH2-terminal kinase

L02:

Human liver cell line

LD50 :

Half maximal lethal concentration

Mb:

Megabases

MCF-7:

Human breast adenocarcinoma cell line

MDA-MB-231:

Human breast cancer cell line

MIC:

Minimum inhibitory concentrations

MS:

Mass spectrometry

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

NAC:

N-Acetylcysteine

NCI-H460:

Human non-small cell lung cancer cell line

NMR:

Nuclear magnetic resonance

p38 MAPK:

P38 Mitogen-activated protein kinase

P53:

Tumor suppressor gene

ROS:

Reactive oxygen species

SCLC:

Small cell lung cancer cell line

SDGs:

Sustainable development goals

SiO2 CC:

Silica gel column chromatography

SMMC-7721:

Human hepatoma cell line

SPR:

Surface plasmon resonance

SW1990:

Human pancreatic cancer cell line

T-47D:

Human ductal breast epithelial tumor cell line

TLC:

Thin layer chromatography

References

  • Al-Obaidi JR, Jambari NN, Ahmad-Kamil EI (2021) Mycopharmaceuticals and nutraceuticals: promising agents to improve human well-being and life quality. J Fungi 7(7):503

    Article  CAS  Google Scholar 

  • Badiali C, Petruccelli V, Brasili E, Pasqua G (2023) Xanthones: biosynthesis and trafficking in plants, fungi and lichens. Plants 12(4):694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bause E, Legler G (1974) Isolation and amino acid sequence of a hexadecapeptide from the active site of ß-glucosidase A3 from Aspergillus wentii. Biol Chem 355(1):438–442

    Article  CAS  Google Scholar 

  • Beekman AM, Barrow RA (2014) Fungal metabolites as pharmaceuticals. Aust J Chem 67(6):827–843

    Article  CAS  Google Scholar 

  • Biswas S, Mulaba-Bafubiandi AF (2016) Optimization of process variables for the biosynthesis of silver nanoparticles by Aspergillus wentii using statistical experimental design. Adv Nat Sci Nanosci Nanotechnol 7(4):045005

    Article  Google Scholar 

  • Brian PW (1951) Antibiotics produced by fungi. Bot Rev 17:357–430

    Article  CAS  Google Scholar 

  • Burrows BF, Turner WB (1966) 1-amino-2-nitrocyclopentanecarboxylic acid: a new naturallyoccurring nitro-compound. J Chem Soc C Org. https://doi.org/10.1039/j39660000255

    Article  Google Scholar 

  • Burrows BF, Mills SD, Turner WB (1965) A new naturally-occurring nitro-compound. Chem Commun 5:75–76

    Google Scholar 

  • Cary JW, Gilbert MK, Lebar MD, Majumdar R, Calvo AM (2018) Aspergillus flavus secondary metabolites: more than just aflatoxins. Food Saf 6(1):7–32

    Article  Google Scholar 

  • Chan GC, Chan WK, Sze DM (2009) The effects of β-glucan on human immune and cancer cells. J Hematol Oncol 2(1):1–11

    Article  Google Scholar 

  • Chander H, Batish VK, Sannabhadti SS, Srinivasan RA (1980) Factors affecting lipase production in Aspergillus wentii. J Food Sci 45(3):598–600

    Article  CAS  Google Scholar 

  • Chen AJ, Hubka V, Frisvad JC, Visagie CM, Houbraken J, Meijer M, Varga J, Demirel R, Jurjević Ž, Kubátová A, Sklenář F, Zhou YG, Samson RA (2017) Polyphasic taxonomy of Aspergillus section Aspergillus (formerly Eurotium), and its occurrence in indoor environments and food. Stud Mycol 88:37–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choma A, Wiater A, Komaniecka I, Paduch R, Pleszczyńska M, Szczodrak J (2013) Chemical characterization of a water insoluble (1→ 3)-α-d-glucan from an alkaline extract of Aspergillus wentii. Carbohydr Polym 91(2):603–608

    Article  CAS  PubMed  Google Scholar 

  • Chopra AK, Chander H, Jasjit S, Ranganathan B (1980) Lipolytic activity of Aspergillus wentii. Milchwissenschaft 35(4):228–230

    CAS  Google Scholar 

  • Christiansen JV, Isbrandt T, Petersen C, Sondergaard TE, Nielsen MR, Pedersen TB, Sørensen JL, Larsen TO, Frisvad JC (2021) Fungal quinones: diversity, producers, and applications of quinones from Aspergillus, Penicillium, Talaromyces, Fusarium, and Arthrinium. Appl Microbiol Biotechnol 105(21–22):8157–8193

    Article  CAS  PubMed  Google Scholar 

  • Christiansen JV, Larsen TO, Frisvad JC (2022) Production of fungal quinones: problems and prospects. Biomolecules 12(8):1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dashora K, Gattupalli M, Tripathi GD, Javed Z, Singh S, Tuohy M, Sarangi PK, Diwan D, Singh HB, Gupta VK (2023) Fungal assisted valorisation of polymeric lignin: mechanism, enzymes and perspectives. Catalysts 13(1):149

    Article  CAS  Google Scholar 

  • de Souza PM, de Bittencourt MLA, Caprara CC, de Freitas M, de Almeida RPC, Silveira D, Fonseca YM, Ferreira Filho EX, Pessoa Junior A, Magalhães PO (2015) A biotechnology perspective of fungal proteases. Braz J Microbiol 46:337–346

    Article  PubMed  PubMed Central  Google Scholar 

  • De Vries RP, Riley R, Wiebenga A, Aguilar-Osorio G, Amillis S, Uchima CA, Anderluh G, Asadollahi M, Askin M, Barry K (2017) Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus Aspergillus. Genome Biol 18:1–45

    Article  Google Scholar 

  • Dorner JW, Cole RJ, Springer JP, Cox RH, Cutler H, Wicklow DT (1980) Isolation and identification of two new biologically active norditerpene dilactones from Aspergillus wentii. Phytochemistry 19(6):1157–1161

    Article  CAS  Google Scholar 

  • Doss A, Anand SP (2012) Purification and characterization of extracellular amylolytic enzyme from Aspergillus species. Afr J Biotech 11(83):14941–21495

    CAS  Google Scholar 

  • Form IC, Bonus M, Gohlke H, Lin W, Daletos G, Proksch P (2019) Xanthone, benzophenone and bianthrone derivatives from the hypersaline lake-derived fungus Aspergillus wentii. Bioorg Med Chem 27(20):115005

    Article  CAS  PubMed  Google Scholar 

  • Ghazawi KF, Fatani SA, Mohamed SG, Mohamed GA, Ibrahim SR (2023) Aspergillus nidulans—natural metabolites powerhouse: Structures, BIOSYNTHESIS, bioactivities, and biotechnological potential. Fermentation 9(4):325

    Article  CAS  Google Scholar 

  • Ghose TK, Panda T, Bisaria VS (1985) Effect of culture phasing and mannanase on production of cellulase and hemicellulase by mixed culture of trichoderma reesei D 1–6 and Aspergillus wentii pt 2804. Biotechnol Bioeng 27(9):1353–1361

    Article  CAS  PubMed  Google Scholar 

  • Gurung N, Ray S, Bose S, Rai V (2013) A broader view: microbial enzymes and their relevance in industries, medicine, and beyond. Biomed Res Int 2013:329121

    Article  PubMed  PubMed Central  Google Scholar 

  • Halsey C, Lumley H, Luckit J (2011) Necrotising external otitis caused by Aspergillus wentii: a case report. Mycoses 54(4):e211–e213

    Article  CAS  PubMed  Google Scholar 

  • Hamasaki T, Kimura Y (1983) Isolation and structures of four new metabolites from Aspergillus wentii. Agric Biol Chem 47(1):163–165

    CAS  Google Scholar 

  • Hareeri RH, Aldurdunji MM, Abdallah HM, Alqarni AA, Mohamed SGA, Mohamed GA, Ibrahim SRM (2022) Aspergillus ochraceus: metabolites, bioactivities, biosynthesis, and biotechnological potential. Molecules 27(19):6759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houbraken J, Kocsubé S, Visagie CM et al (2020) Classification of Aspergillus, Penicillium, Talaromyces and related genera (Eurotiales): an overview of families, genera, subgenera, sections, series and species. Stud Mycol 95:5–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibrahim SRM, Sirwi A, Eid BG, Mohamed SG, Mohamed GA (2021a) Bright side of Fusarium oxysporum: secondary metabolites bioactivities and industrial relevance in biotechnology and nanotechnology. J Fungi 7(11):943

    Article  CAS  Google Scholar 

  • Ibrahim SRM, Mohamed SGA, Altyar AE, Mohamed GA (2021c) Natural products of the fungal genus humicola: diversity, biological activity, and industrial importance. Curr Microbiol 78(7):2488–2509

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim SRM, Altyar AE, Mohamed SGA, Mohamed GA (2022a) Genus Thielavia: phytochemicals, industrial importance and biological relevance. Nat Prod Res 36(19):5108–5123

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim SRM, Choudhry H, Asseri AH, Elfaky MA, Mohamed SGA, Mohamed GA. (2022b) Stachybotrys chartarum—a hidden treasure: secondary metabolites, bioactivities, and biotechnological relevance. J Fungi 8(5):504

    Article  CAS  Google Scholar 

  • Ibrahim SR, Mohamed SG, Alsaadi BH, Althubyani MM, Awari ZI, Hussein HG, Aljohani AA, Albasri JF, Faraj SA, Mohamed GA (2023) Secondary metabolites, biological activities, and industrial and biotechnological importance of Aspergillus sydowii. Mar Drugs 21(8):441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang W, Meng L, Xu G, Lv C, Wang H, Tian H, Chen R, Jiao B, Wang B, Huang C (2018) Wentilactone A induces cell apoptosis by targeting AKR1C1 gene via the IGF 1R/IRS1/PI3K/AKT/Nrf2/FLIP/Caspase 3 signaling pathway in small cell lung cancer. Oncol Lett 16(5):6445–6457

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang W, Rixiati Y, Huang H, Shi Y, Huang C, Jiao B (2020) Asperolide A prevents bone metastatic breast cancer via the PI3K/AKT/mTOR/c-Fos/NFATc1 signaling pathway. Cancer Med 9(21):8173–8185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson DE, Nelson G, Ciegler A (1968) Starch hydrolysis by conidia of Aspergillus wentii. Appl Microbiol 16(11):1678–1683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joint Genome Institute (JGI). 2024. https://mycocosm.jgi.doe.gov/Aspwe1/Aspwe1.home.html. Accessed 26 Feb 2024.

  • Kale SC, Gavhane AJ (2020) Isolation of a mesophilic strain of Aspergillus wentii capable of decolourizing textile dyeing mill effluent. Poll Res 39:S40-45

    CAS  Google Scholar 

  • Karim KMR, Tasnim T (2018) Fungal glucoamylase production and characterization: a review. Biores Commun 4(2):591–605

    Google Scholar 

  • Keller NP (2019) Fungal secondary metabolism: regulation, function and drug discovery. Nat Rev Microbiol 17(3):167–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kertmen M, Alma MH (2010) Use of Aspergillus wentii for biosorption of methylene blue from aqueous solution. Afr J Biotechnol 9(6):874–881

    Article  Google Scholar 

  • Khambhaty Y, Mody K, Basha S (2012) Efficient removal of brilliant blue G (BBG) from aqueous solutions by marine Aspergillus wentii: kinetics, equilibrium and process design. Ecol Eng 41:74–83

    Article  Google Scholar 

  • Krijgsheld P, Bleichrodt R, Van Veluw GJ, Wang F, Müller WH, Dijksterhuis J et al (2013) Development in Aspergillus. Stud Mycol 74:1–29. https://doi.org/10.3114/sim0006

    Article  CAS  PubMed  Google Scholar 

  • Kulik MM, Holaday CE (1966) Aflatoxin: a metabolic product of several fungi. Mycopathol Mycol Appl 30:137–140

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Satyanarayana T (2009) Microbial glucoamylases: characteristics and applications. Crit Rev Biotechnol 29(3):225–255

    Article  CAS  PubMed  Google Scholar 

  • Lago MC, Dos Santos FC, Bueno PS, de Oliveira MA, Barbosa-Tessmann IP (2021) The glucoamylase from Aspergillus wentii: purification and characterization. J Basic Microbiol 61(5):443–458

    Article  CAS  PubMed  Google Scholar 

  • Legler G, Roeser K, Illig H (1979) Reaction of β-d-glucosidase A3 from Aspergillus wentii with d-Glucal. Eur J Biochem 101(1):85–92

    Article  CAS  PubMed  Google Scholar 

  • Legler G, Sinnott ML, Withers SG (1980) Catalysis by β-glucosidase A 3 of Aspergillus wentii. J Chem Soc Perkin Trans 2(9):1376–1383

    Article  Google Scholar 

  • Lević J, Gošić-Dondo S, Ivanović D, Stanković SŽ, Krnjaja V, Bočarov-Stančić AS, Stepanić A (2013) An outbreak of Aspergillus species in response to environmental conditions in Serbia. Pesticidi i Fitomedicina 28(3):167–179

    Article  Google Scholar 

  • Li X, Li X, Xu G, Li C, Wang B (2014) Antioxidant metabolites from marine alga-derived fungus Aspergillus wentii EN-48. Phytochem Lett 7:120–123

    Article  CAS  Google Scholar 

  • Li X, Li X, Li X, Xu G, Liu Y, Wang B (2016a) Aspewentins D–H, 20-nor-isopimarane derivatives from the deep sea sediment-derived fungus Aspergillus wentii SD-310. J Nat Prod 79(5):1347–1353

    Article  CAS  PubMed  Google Scholar 

  • Li X, Li X, Li X, Xu G, Zhang P, Meng L, Wang B (2016b) Tetranorlabdane diterpenoids from the deep sea sediment-derived fungus Aspergillus wentii SD-310. Planta Med 82(09/10):877–881

    Article  CAS  PubMed  Google Scholar 

  • Li X, Li X, Li X, Xu G, Liu Y, Wang B (2016c) 20-nor-isopimarane cycloethers from the deep-sea sediment-derived fungus Aspergillus wentii SD-310. RSC Adv 6(79):75981–75987

    Article  CAS  Google Scholar 

  • Li X, Li X, Li X, Xu G, Liu Y, Wang B (2017) Wentinoids A–F, six new isopimarane diterpenoids from Aspergillus wentii SD-310, a deep-sea sediment derived fungus. RSC Adv 7(8):4387–4394

    Article  CAS  Google Scholar 

  • Li X, Li X, Li X, Xu G, Liu Y, Wang B (2018) 20-nor-isopimarane epimers produced by Aspergillus wentii SD-310, a fungal strain obtained from deep sea sediment. Mar Drugs 16(11):440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Li X, Wang B (2019) Structural revision of wentiquinone C and related congeners from anthraquinones to xanthones using chemical derivatization and NMR analysis. Mar Drugs 17(1):8

    Article  CAS  Google Scholar 

  • Liu D, Garrigues S, de Vries RP (2023) Heterologous protein production in filamentous fungi. Appl Microbiol Biotechnol 107(16):5019–5033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo P, Huang J, Lv J, Wang G, Hu D, Gao H (2024) Biosynthesis of fungal terpenoids. Nat Prod Rep. https://doi.org/10.1039/d3np00052d

    Article  PubMed  Google Scholar 

  • Lv C, Hong Y, Miao L, Li C, Xu G, Wei S, Wang B, Huang C, Jiao B (2013) Wentilactone A as a novel potential antitumor agent induces apoptosis and G2/M arrest of human lung carcinoma cells, and is mediated by HRas-GTP accumulation to excessively activate the ras/raf/ERK/p53-p21 pathway. Cell Death Dis 4(12):e952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madhavan A, Arun KB, Sindhu R, Jose AA, Pugazhendhi A, Binod P, Sirohi R, Reshmy R, Awasthi MK (2022) Engineering interventions in industrial filamentous fungal cell factories for biomass valorization. Bioresour Technol 344:126209

    Article  CAS  PubMed  Google Scholar 

  • Mehta A, Guleria S, Sharma R, Gupta R (2021) The lipases and their applications with emphasis on food industry. In: Ray RC (ed) Microbial biotechnology in food and health. Elsevier, Amsterdam, p 143

    Chapter  Google Scholar 

  • Miao F, Liang X, Liu X, Ji N (2014) Aspewentins A–C, norditerpenes from a cryptic pathway in an algicolous strain of Aspergillus wentii. J Nat Prod 77(2):429–432

    Article  CAS  PubMed  Google Scholar 

  • Mohtar W, Melini WH, Wan-Mohtar WA, Imad AQ, Zahuri AA, Ibrahim MF, Show P, Ilham Z, Jamaludin AA, Abdul Patah MF, Ahmad Usuldin SR, Rowan N (2022) Role of ascomycete and basidiomycete fungi in meeting established and emerging sustainability opportunities: a review. Bioengineered 13(7–12):14903–14935

    Article  Google Scholar 

  • Mojsov K (2012) Microbial α-amylases and their industrial applications: a review. Int J Manag IT Eng 2(10):583–609

    Google Scholar 

  • Navale V, Vamkudoth KR, Ajmera S, Dhuri V (2021) Aspergillus derived mycotoxins in food and the environment: prevalence, detection, and toxicity. Toxicol Rep 8:1008–1030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naveed M, Nadeem F, Mehmood T, Bilal M, Anwar Z, Amjad F (2021) Protease—a versatile and ecofriendly biocatalyst with multi-industrial applications: an updated review. Catal Lett 151:307–323

    Article  CAS  Google Scholar 

  • Navina BK, Velmurugan NK, Kumar PS, Rangasamy G, Palanivelu J, Thamarai P, Vickram AS, Saravanan A, Shakoor A (2024) Fungal bioremediation approaches for the removal of toxic pollutants: mechanistic understanding for biorefinery applications. Chemosphere 350:141123

    Article  CAS  PubMed  Google Scholar 

  • Nielsen KF, Mogensen JM, Johansen M, Larsen TO, Frisvad JC (2009) Review of secondary metabolites and mycotoxins from the Aspergillus niger group. Anal and Bioanal Chem 395:1225–1242

    Article  CAS  Google Scholar 

  • Nji QN, Babalola OO, Mwanza M (2023) Soil Aspergillus species, pathogenicity and control perspectives. J Fungi 9(7):766

    Article  CAS  Google Scholar 

  • Norouzian D, Akbarzadeh A, Scharer JM, Young MM (2006) Fungal glucoamylases. Biotechnol Adv 24(1):80–85

    Article  CAS  PubMed  Google Scholar 

  • Panda T, Bisaria VS, Ghose TK (1987) Effect of culture phasing and a polysaccharide on production of xylanase by mixed culture of trichoderma reesei D1–6 and Aspergillus wentii pt 2804. Biotechnol Bioeng 30(7):868–874

    Article  CAS  PubMed  Google Scholar 

  • Pasqualotto AC (2009) Differences in pathogenicity and clinical syndromes due to Aspergillus fumigatus and Aspergillus flavus Med. Mycol 47:S261–S270

    CAS  Google Scholar 

  • Peterson SW (1995) Phylogenetic analysis of Aspergillus sections cremei and wentii, based on ribosomal DNA sequences. Mycol Res 99(11):1349–1355

    Article  CAS  Google Scholar 

  • Peterson SW (2000) Phylogenetic relationships in Aspergillus based on rDNA sequence analysis. In: Samson RA, Pitt JI (eds) Integration of modern taxonomic methods for Penicillium and Aspergillus classification. Harwood Academic Publishers, Amsterdam, pp 323–355

    Google Scholar 

  • Prema K, Vandana R (2012) Silver recovery from waste X-ray films using alkaline protease from Aspergillus wentii and its antibacterial studies. Res J Biotechnol 7:1

    Google Scholar 

  • Puntillo P (2023) Circular economy business models: towards achieving sustainable development goals in the waste management sector—empirical evidence and theoretical implications. Corp Soc Responsib Environ Manag 30(2):941–954

    Article  Google Scholar 

  • Rabie CJ, Steyn PS, van Heerden FR (1986) The isolation and identification of some toxic constituents of Aspergillus wentii wehmer. Mycotox Res 2(1):19–24

    Article  CAS  Google Scholar 

  • Ryan MJ, McCluskey K, Verkleij G, Robert V, Smith D (2019) Fungal biological resources to support international development: challenges and opportunities. World J Microbiol Biotechnol 35(9):139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samson RA, Visagie CM, Houbraken J, Hong S, Hubka V, Klaassen CH, Perrone G, Seifert KA, Susca A, Tanney JB (2014) Phylogeny, identification and nomenclature of the genus Aspergillus. Stud Mycol 78(1):141–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanal F, Karatop R (2016) Preliminary characterization of crude inulinase activity of Aspergillus wentii. Trak Univ J Nat Sci 16(1):25–30

    Google Scholar 

  • Schroeder HW, Verrett MJ (1969) Production of aflatoxin by Aspergillus wentii wehmer. Can J Microbiol 15(8):895–898

    Article  CAS  PubMed  Google Scholar 

  • Selva A, Traldi P, Camarda L, Nasini G (1980) New secondary metabolites of Aspergillus wentii wehmer: the positive and negative ion mass spectra produced by electron impact. Biomed Mass Spectrom 7(4):148–152

    Article  CAS  PubMed  Google Scholar 

  • Shridhar NB (2023) An update on mycotoxicosis in cattle and buffaloes Karnataka state. Vet Pract 24(1):145

    Google Scholar 

  • Singh I, Thakur P (2023) Impact of fungi on the world economy and its sustainability: current status and potentials. In: Singh I, Rajpal VR, Navi SS (eds) Fungal resources for sustainable economy: current status and future perspectives. Springer, Berlin, p 3

    Chapter  Google Scholar 

  • Singh R, Kumar M, Mittal A, Mehta PK (2016) Microbial enzymes: industrial progress in 21st century. 3 Biotech 6(2):1–15

    Article  PubMed  Google Scholar 

  • Singh RS, Singh T, Pandey A (2019) Microbial enzymes—an overview. In: Singh RS, Singhania RR, Pandey A, Larroche C (eds) Advances in enzyme technology. Elsevier, Amsterdam, pp 1–40

    Chapter  Google Scholar 

  • Sinha S, Chakrabarty SL (1978) Production of amylase by a submerged culture of Aspergillus wentii. Folia Microbiol 23:6–11

    Article  CAS  Google Scholar 

  • Smitha MS, Singh S, Singh R (2017) Microbial biotransformation: a process for chemical alterations. J Bacteriol Mycol Open Access 4(2):85

    Google Scholar 

  • Soltani J (2016) Chapter 22 - Secondary metabolite diversity of the genus Aspergillus: recent advances. In: Gupta VK (ed) New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, pp 275–292

    Chapter  Google Scholar 

  • Souza Filho PF, Zamani A, Taherzadeh MJ (2019) Edible protein production by filamentous fungi using starch plant wastewater. Waste Biomass Valor 10:2487–2496

    Article  CAS  Google Scholar 

  • Srivastava SK, Gopalkrishnan KS, Ramachandran KB (1984) Kinetic characterization of a crude β-d-glucosidase from Aspergillus wentii pt 2804. Enzyme Microb Technol 6(11):508–512

    Article  CAS  Google Scholar 

  • Sugui JA, Kwon-Chung KJ, Juvvadi PR, Latgé JP, Steinbach WJ (2014) Aspergillus fumigatus and related species. Cold Spring Harb Perspect Med 5(2):a019786

    Article  PubMed  Google Scholar 

  • Sun H, Li X, Meng L, Cui C, Gao S, Li C, Huang C, Wang B (2012) Asperolides A–C, tetranorlabdane diterpenoids from the marine alga-derived endophytic fungus Aspergillus wentii EN-48. J Nat Prod 75(2):148–152

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Li X, Meng L, Cui C, Gao S, Li C, Wang B (2013a) Two new secoanthraquinone derivatives from the marine-derived endophytic fungus Aspergillus wentii EN-48. Helv Chim Acta 96(3):458–462

    Article  CAS  Google Scholar 

  • Sun R, Miao F, Zhang J, Wang G, Yin X, Ji N (2013b) Three new xanthone derivatives from an algicolous isolate of Aspergillus wentii. Magn Reson Chem 51(1):65–68

    Article  CAS  PubMed  Google Scholar 

  • Uka V, Cary JW, Lebar MD, Puel O, De Saeger S, Diana Di Mavungu J (2020) Chemical repertoire and biosynthetic machinery of the Aspergillus flavus secondary metabolome: a review. Compr Rev Food Sci Food Saf 19(6):2797–2842

    Article  PubMed  Google Scholar 

  • Usami A, Motooka R, Miyazawa M (2014) Highly selective biotransformation of ( )-(1 S)-and (−)-(1 R)-camphorquinone by Aspergillus wentii. Biocatal Biotransform 32(5–6):285–289

    Article  CAS  Google Scholar 

  • Vannucci L, Krizan J, Sima P, Stakheev D, Caja F, Rajsiglova L, Horak V, Saieh M (2013) Immunostimulatory properties and antitumor activities of glucans. Int J Oncol 43(2):357–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varga J, Kevei E, Rinyu E, Téren J, Kozakiewicz Z (1996) Ochratoxin production by Aspergillus species. Appl Environ Microbiol 62(12):4461–4464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wells JM, Cole RJ, Kirksey JW (1975) Emodin, a toxic metabolite of Aspergillus wentii isolated from weevil-damaged chestnuts. Appl Microbiol 30(1):26–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wezeman T, Bräse S, Masters K (2015) Xanthone dimers: a compound family which is both common and privileged. Nat Prod Rep 32(1):6–28

    Article  CAS  PubMed  Google Scholar 

  • Wikandari R, Hasniah N, Taherzadeh MJ (2022) The role of filamentous fungi in advancing the development of a sustainable circular bioeconomy. Bioresour Technol 345:126531

    Article  CAS  PubMed  Google Scholar 

  • Yildirim K (2010) Microbial hydroxylation of some steroids by Aspergillus wentii MRC 200316. Collect Czech Chem Commun 75(12):1273–1281

    Article  CAS  Google Scholar 

  • Yildirim K, Ayhan C (2012) Biotransformation of 19-nortestosterone by Aspergillus wentii MRC 200316. J Chem Res 36(9):541–542

    Article  CAS  Google Scholar 

  • Yildirim K, Kupcu I, Gulsan F (2010) Biotransformation of some steroids by Aspergillus wentii. Zeitschrift Für Naturforschung C 65(11–12):688–692

    Article  CAS  Google Scholar 

  • Youssef FS, Singab ANB (2021) An updated review on the secondary metabolites and biological activities of Aspergillus ruber and Aspergillus flavus and exploring the cytotoxic potential of their isolated compounds using virtual screening. Evid Based Complement Alternat Med 2021:8860784

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuan B, Keller NP, Oakley BR, Stajich JE, Wang CC (2022) Manipulation of the global regulator mcrA upregulates secondary metabolite production in Aspergillus wentii using CRISPR-Cas9 with in vitro assembled ribonucleoproteins. ACS Chem Biol 17(10):2828–2835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Miao L, Sun W, Jiao B, Wang B, Yao L, Huang C (2012) Wentilactone B from Aspergillus wentii induces apoptosis and inhibits proliferation and migration of human hepatoma SMMC-7721 cells. Biol Pharm Bull 35(11):1964–1971

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Miao L, Lv C, Sun H, Wei S, Wang B, Huang C, Jiao B (2013) Wentilactone B induces G2/M phase arrest and apoptosis via the ras/raf/MAPK signaling pathway in human hepatoma SMMC-7721 cells. Cell Death Dis 4(6):e657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

S.R.M.I., G.A.M., H.M.A., and A.A.A. contributed to the study`s conception and design. Data collection, literature search, and compilation were performed by S.G.A.M., B.E.A., and H.G.A.H. Preparation of data tables and generating structures by B.E.A., S.G.A.M., A.A., and H.G.A.H. Writing the original draft of the manuscript was done by S.R.M.I., A.A.A., G.A.M. and H.M.A. A.A. and B.E.A. reviewed and edited the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sabrin R. M. Ibrahim.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Communicated by Yusuf Akhter.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ainousah, B.E., Ibrahim, S.R.M., Alzain, A.A. et al. Exploring the potential of Aspergillus wentii: secondary metabolites and biological properties. Arch Microbiol 206, 216 (2024). https://doi.org/10.1007/s00203-024-03934-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00203-024-03934-4

Keywords

Navigation