Skip to main content
Log in

Molecular cloning, expression, purification, and characterization of Bacillus subtilis hydrolyzed ginsenoside Rc of α-L-arabinofuranosidase in Escherichia coli

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The α-L-arabinofuranosidase enzyme plays a crucial role in the degradation of ginsenosides. In this study, we successfully cloned and expressed a novel α-L-arabinofuranosidase bsafs gene (1503 bp, 501 amino acids, 55 kDa, and pI = 5.4) belonging to glycosyl hydrolase (GH) family 51 from Bacillus subtilis genome in Escherichia coli BL21 cells. The recombinant protein Bsafs was purified using Ni2+ sepharose fastflow affinity chromatography and exhibited a specific activity of 2.91 U/mg. Bsafs effectively hydrolyzed the α-L-arabinofuranoside at C20 site of ginsenoside Rc to produce Rd as the product. The Km values for hydrolysis of pNP-α-L-arabinofuranoside (pNPαAraf) and ginsenoside Rc were determined as 0.74 and 4.59 mmol/L, respectively; while the Vmax values for these substrates were found to be 24 and 164 μmol/min/mg, respectively; furthermore, the Kcat values for these enzymes were calculated as 22.3 and 1.58 S−1 correspondingly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data presented in this study are available on request from the corresponding author. The data are not publicly available due to privacy.

References

  • An DS, Cui CH, Sung BH, Yang HC, Kim SC, Lee ST, Im WT, Kim SG (2012) Characterization of a novel ginsenoside-hydrolyzing α-L-arabinofuranosidase, AbfA, from Rhodanobacter ginsenosidimutans Gsoil 3054T. Appl Microbiol Biotechno 94:672–682

    Article  Google Scholar 

  • An DS, Cui CH, Siddiqi MZ, Yu HS (2017) Gram-scale production of ginsenoside F1 using a recombinant bacterial β-glucosidase. J Microbiol Biotechnol 27:1559–1565

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Nose M, Ogihara Y (1987) Alkaline cleavage of ginsenosides. Chem Pharm Bull 35:1653–1655

    Article  CAS  Google Scholar 

  • Cleland WW (1967) The statistical analysis of enzyme kinetic data. Adv Enzymol Relat Areas Mol Biol 29:1–32

    CAS  PubMed  Google Scholar 

  • Fu Y (2019) Biotransformation of ginsenoside Rb1 to Gyp-XVII and minor ginsenoside Rg3 by endophytic bacterium Flavobacterium sp. GE 32 isolated from Panax ginseng. Lett Appl Microbio 68:134–141

    Article  CAS  Google Scholar 

  • Fuzzati N (2004) Analysis methods of ginsenosides. J Chromatogr B 812:119–133

    Article  CAS  Google Scholar 

  • Han BH, Park MH, Han YN, Woo LK, Sankawa U, Yahara S, Tanaka O (1982) Degradation of ginseng saponins under mild acidic conditions. Planta Med 44:146–149

    Article  CAS  PubMed  Google Scholar 

  • Hollinger J, Wu JB, Awayda KM, O’Connell MR, Yao P (2023) Expression and purification of the mitochondrial transmembrane protein FAM210A in Escherichia coli. Protein Expression Purif 106:322

    Google Scholar 

  • Inacio JM, Correia IL, de Sa-Nogueira I (2008) Two distinct arabinofuranosidases contribute to arabino-oligosaccharide degradation in Bacillus subtili. Microbiol 154:2719–2729

    Article  CAS  Google Scholar 

  • Jia L, Zhao Y (2009) Current evaluation of themillennium phytomedicine ginseng[I]; etymology, pharmacognosy, phytochemistry, market and regulations. Curr Med Chem 16:2475–2484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim DH (2012) Chemical diversity of panax ginseng, panax quinquifolium, and panax notoginseng. J Ginseng Res 36:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JH, Hyun YJ, Kim DH (2011) Cloning and characterization of α-L-arabinofuranosidase and bifunctional α-L-arabinopyranosidase/β-D-galactopyranosidase from Bifidobacterium longum H-1. J Appl Microbiol 111:1097–1107

    Article  CAS  PubMed  Google Scholar 

  • Lin WM, Zhang YM, Moldzio R (2007) Ginsenoside Rd attenuates neuroinflammation of dopaminergic cells in culture. J Neural Transm 72:105–112

    CAS  Google Scholar 

  • Liu QM, Jung HM, Cui CH, Sung BH, Kim JK, Kim SG, Lee ST, Kim SC, Im WT (2013) Bioconversion of ginsenoside Rc into Rd by a novel α-L-arabinofuranosidase, Abf 22–3 from Leuconostoc sp. 22–3: cloning, expression, and enzyme characterization. Antonie Van Leeuwenhoek 103:747–754

    Article  CAS  PubMed  Google Scholar 

  • Matrawy AA, Khalil AI, Embaby AM (2022) Molecular study on recombinant cold-adapted, detergent- and alkali stable esterase (EstRag) from Lysinibacillus sp: a member of family VI. World J Microbiol Biotechnol 38:217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qu CL, Bai YP, Jin XQ et al (2009) Study on ginsenosides in different parts and ages of Panax quinquefolius. Food Chem 115:340–346

    Article  CAS  Google Scholar 

  • Quan LH, Min JW, Sathiyamoorthy S, Yang DU, Kim YJ, Yang DC (2012) Biotransformation of ginsenosides Re and Rg1 into ginsenosides Rg2 and Rh1 by recombinant β-glucosidase. Biotechnol Lett 34:913–917

    Article  CAS  PubMed  Google Scholar 

  • Scaglione F, Ferrara F, Dugnani S (1990) Immunomodulatory effects of two etracts of Panax ginseng C.A. Meyer Drugs Exp Clin Res 16:537–542

    CAS  PubMed  Google Scholar 

  • Shi W, Wang YT, Li J, Zhang HQ, Ding L (2007) Investigation of ginsenosides in different parts and ages of Panax ginseng. Food Chem 102:664–668

    Article  CAS  Google Scholar 

  • Shin KC, Oh DK (2016) Classification of glycosidases that hydrolyze the specific positions and types of sugar moieties in ginsenosides. Crit Rev Biotechnol 36:1036–1049

    Article  CAS  PubMed  Google Scholar 

  • Shin HY, Park SY, Sung JH, Kim DH (2003) Purification and characterization of α-L-arabinopyranosidase and α-Larabinofuranosidase from Bifdobacterium breve K-110, a human intestinal anaerobic bacterium metabolizing ginsenoside Rb2 and Rc. Appl Environ Microbiol 69:7116–7123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin KC, Lee GW, Oh DK (2013a) Production of ginsenoside Rd from ginsenoside Rc by α-L-arabinofuranosidase from Caldicellulosiruptor saccharolyticus. J Microbiol Biotechnol 23:483–490

    Article  CAS  PubMed  Google Scholar 

  • Shin KC, Oh HJ, Kim BJ, Oh DK (2013b) Complete conversion of major protopanaxadiol ginsenosides to compound K by the combined use of α-L-arabinofuranosidase and β-galactosidase from Caldicellulosiruptor saccharolyticus and β-glucosidase from Sulfolobus acidocaldarius. J Biotechnol 167:33–40

    Article  CAS  PubMed  Google Scholar 

  • Singh VK, Agarwal SS, Gupta BM (1984) Immunomodulatory activity of Panax ginseng extract. Planta Med 50:462–465

    Article  CAS  PubMed  Google Scholar 

  • Tawab MA, Bahr U, Karas M, Wurglics M, Schubert-Zsilavecz M (2003) Degradation of ginsenosides in humans after oral administration. Drug Metab Dispos 31:1065–1071

    Article  PubMed  Google Scholar 

  • Wandrey C, Liese A, Kihumbu D (2000) Industrial biocatalysis: past, present, and future. Org Process Res Dev 4:286–290

    Article  CAS  Google Scholar 

  • Yang ZG, Sun HX, Ye YP (2006) Ginsenoside Rd from Panax notoginseng is cytotoxic towards HeLa cancer cells and induces apoptosis. Chem Biodivers 3:187–197

    Article  CAS  PubMed  Google Scholar 

  • Yang ZG, Chen A, Sun HX, Ye YP, Fang WH (2007) Ginsenoside Rd elicits Th1 and Th2 immune responses to ovalbumin in mice. Vaccine 25:161–169

    Article  CAS  PubMed  Google Scholar 

  • Yang WZ, Hu Y, Wu WY, Ye M, Gao DA (2014) Saponins in the genus Panax L. (Araliaceae): A systematic review of their chemical diversity. Phytochemistry 106:7–24

    Article  CAS  PubMed  Google Scholar 

  • Yokozawa T, Satoh A, Cho EJ (2004) Ginsenoside-Rd attenuates oxidative damage related to aging in senescence-accelerated mice. J Pharm Pharmacol 56:107–113

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Yu H, Bao Y (2002) Purification and characterization of ginsenoside-α-arabinofuranase hydrolyzing ginsenoside Rc into Rd form the fresh root of Panax ginseng. Process Biochem 37:793–798

    Article  CAS  Google Scholar 

  • Zhu L, Wang YC, Zhao JY, Wen ML, Li MG, Han XL (2020) Transformation of ginsenoside Rb3 and C-Mx by recombinant beta-xylosidase. Chem J Chin Univ 41:1010–1017

    CAS  Google Scholar 

  • Zuo SS, Wang YC, Zhu L, Zhao JY, Li MG, Han XL, Wen ML (2020) Cloning and characterization of a ginsenoside-hydrolyzing α-L-arabinofuranosidase, CaAraf51, From Cellulosimicrobium aquatile Lyp51. Curr Microbiol 77:2783–2791

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work is supported by Special Basic Cooperative Research Programs of Yunnan Provincial Undergraduate Universities’ Association (Grant NO. 202301BA070001-081), Yunnan Fundamental Research Projects (Grant NO. 202301AU070012), Special Basic Cooperative Research Innovation Programs of Qujing Science and Technology Bureau & Qujing Normal University (Grant NO. KJLH2023ZD06, KJLH2022YB07).

Author information

Authors and Affiliations

Authors

Contributions

L. Z and Y. C. W conceived the study and supervised the project. J C cloned and expressed Bsafs. L. Z tudy of the enzymatic activity of Bsafs. L. Z wrote the main manuscript. All authors participated in preparation of the manuscript.

Corresponding authors

Correspondence to Yuchen Wang or Jian Cai.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Communicated by PANKAJ BHATT.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., Wang, Y. & Cai, J. Molecular cloning, expression, purification, and characterization of Bacillus subtilis hydrolyzed ginsenoside Rc of α-L-arabinofuranosidase in Escherichia coli. Arch Microbiol 206, 181 (2024). https://doi.org/10.1007/s00203-024-03902-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00203-024-03902-y

Keywords

Navigation