Skip to main content
Log in

A comprehensive investigation of the medicinal efficacy of antimicrobial fusion peptides expressed in probiotic bacteria for the treatment of pan drug-resistant (PDR) infections

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The present work aimed to examine the intracellular antibacterial efficacy of Recombinant Lactobacillus acidophilus/antimicrobial peptides (AMPs) Melittin and Alyteserin-1a, specifically targeting Gram-negative bacteria. The first assessment was to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of Recombinant L. acidophilus/AMPs versus Gram-negative and Gram-positive bacteria. In addition, the researchers examined the in vitro viability and safety of AMPs generated by L. acidophilus. The experiments included exposing the AMPs to elevated temperatures, proteases, cationic salts at physiological levels, and specific pH settings. The safety aspect was evaluated using hemolytic analysis utilizing sheep erythrocytes; cytotoxicity assays employing cell lines, and experiments on beneficial gut lactobacilli. An experiment was done using a time-kill method to assess the intracellular antibacterial efficacy of Recombinant L. acidophilus/AMPs compared to pathogenic varieties in HEp-2 cells. Previous investigations have shown that the MBC levels of recombinant L. acidophilus/AMPs were consistently two to four times higher than the equivalent MIC values when evaluated versus Gram-negative bacteria. Furthermore, the stability of the Recombinant L. acidophilus/AMPs showed variability when exposed to elevated temperatures (70 and 90 ℃), treated with protease enzymes (proteinase K, lysozyme), exposed to higher concentrations of physiological salts (150 mM NaCl and 2 mM MgCl2), and varying pH levels (ranging from 4.0 to 9.0). The recombinant L. acidophilus/AMPs are non-hemolytic towards sheep erythrocytes, exhibit little cytotoxicity in RAW 264.7 and HEp-2 cells, and are considered safe when compared to beneficial gut lactobacilli. The research examined the intracellular bacteriostatic effects of recombinant L. acidophilus/AMPs on Gram-negative bacteria inside HEp-2 cells. Nevertheless, no notable bactericidal impact was seen on Gram-positive bacteria (P > 0.05). The research shows that recombinant L. acidophilus/AMPs, namely (L. acidophilus/melittin/Alyteserin-1a) as the focus of the investigation, effectively eliminate Gram-negative bacteria. Therefore, more investigation is necessary to elaborate on these discoveries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data sets generated and/or analyzed during the current study are available in the https://www.uniprot.org/uniprotkb/Q8LW54/entry.

Abbreviations

MIC:

Minimum inhibitory concentration

MBC:

Minimum bactericidal concentration

MDR:

Multidrug resistance

XDR:

Extensive drug resistance

ESBLs:

Extended-spectrum beta-lactamases

CRE:

Carbapenem-resistant Enterobacteriaceae

MRSA:

Methicillin-resistant S. aureus

PDR:

Pan drug resistance

CAMA:

Cecropin A (1–7)-Melittin

LAB:

Lactic acid bacteria

References

  • Aoki W, Ueda M (2013) Characterization of antimicrobial peptides toward the development of novel antibiotics. Pharmaceuticals 6(8):1055–1081

    Article  PubMed  PubMed Central  Google Scholar 

  • Baindara P, Chaudhry V, Mittal G, Liao LM, Matos CO, Khatri N, Franco OL, Patil PB, Korpole S (2016) Characterization of the antimicrobial peptide penisin, a class Ia novel lantibiotic from Paenibacillus sp. strain A3. Antimicrob Agents Chemother 60(1):580–591

    Article  CAS  PubMed  Google Scholar 

  • Boucher HW, Talbot GH, Benjamin Jr DK, Bradley J, Guidos RJ, Jones RN, Murray BE, Bonomo RA, Gilbert D, Infectious Diseases Society of America (2013) 10×′20 progress—development of new drugs active against gram-negative bacilli: an update from the Infectious Diseases Society of America. Clin Infect Dis 56(12):1685–1694

  • Chen N, Jiang C (2023) Antimicrobial peptides: structure, mechanism, and modification. Eur J Med Chem 5(255):115377

    Article  Google Scholar 

  • Cole TJ, Parker JK, Feller AL, Wilke CO, Davies BW (2022) Evidence for widespread class II microcins in Enterobacterales genomes. Appl Environ Microbiol 88(23):e01486-22

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Conlon JM, Demandt A, Nielsen PF, Leprince J, Vaudry H, Woodhams DC (2009) The alyteserins: two families of antimicrobial peptides from the skin secretions of the midwife toad Alytes obstetricans (Alytidae). Peptides 30(6):1069–1073

    Article  CAS  PubMed  Google Scholar 

  • da Silva BD, Laurent J, Lourenço J, Novion Ducassou J, Couté Y, Guzzo J, Rieu A (2023) Membrane vesicles released by Lacticaseibacillus casei BL23 inhibit the biofilm formation of Salmonella Enteritidis. Sci Rep 13(1):1163

    Article  ADS  Google Scholar 

  • de Oliveira Santos JV, da Costa Júnior SD, de Fátima Ramos dos Santos Medeiros SM, Cavalcanti ID, de Souza JB, Coriolano DL, da Silva WR, Alves MH, Cavalcanti IM (2022) Panorama of bacterial infections caused by epidemic resistant strains. Curr Microbiol 79(6):175

  • Deng T, Jia Y, Tong Z, Shi J, Wang Z, Liu Y (2022) Bismuth drugs reverse tet (X)-conferred tigecycline resistance in gram-negative bacteria. Microbiol Spectrum 10(1):e01578-21

    Article  Google Scholar 

  • Fatehi Z, Doosti A, Jami MS (2023) Oral vaccination with novel Lactococcus lactis mucosal live vector-secreting Brucella lumazine synthase (BLS) protein induces humoral and cellular immune protection against Brucella abortus. Arch Microbiol 205(4):122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fotakis G, Timbrell JA (2006) In vitro cytotoxicity assays: comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicol Lett 160(2):171–177

    Article  CAS  PubMed  Google Scholar 

  • Galdiero E, Siciliano A, Gesuele R, Di Onofrio V, Falanga A, Maione A, Liguori R, Libralato G, Guida M (2019) Melittin inhibition and eradication activity for resistant polymicrobial biofilm isolated from a dairy industry after disinfection. Int J Microbiol 2019:4012394

    Article  PubMed  PubMed Central  Google Scholar 

  • Giacobbe DR, Bassetti M (2022) Innovative β-lactam/β-lactamase inhibitor combinations for carbapenem-resistant gram-negative bacteria. Future Microbiol 17(6):393–396

    Article  CAS  PubMed  Google Scholar 

  • Gorr SU, Brigman HV, Anderson JC, Hirsch EB (2022) The antimicrobial peptide DGL13K is active against drug-resistant gram-negative bacteria and sub-inhibitory concentrations stimulate bacterial growth without causing resistance. PLoS ONE 17(8):e0273504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gouran ST, Doosti A, Jami MS (2023) Brucella abortus antigen omp25 vaccines: development and targeting based on Lactococcus lactis. Vet Med Sci 9(4):1908–1922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gourkhede DP, Bhoomika S, Pathak R, Yadav JP, Nishanth D, Vergis J, Malik SV, Barbuddhe SB, Rawool DB (2020) Antimicrobial efficacy of Cecropin A (1–7)-Melittin and Lactoferricin (17–30) against multi-drug resistant Salmonella enteritidis. Microb Pathog 1(147):104405

    Article  Google Scholar 

  • Hirsch R, Wiesner J, Marker A, Pfeifer Y, Bauer A, Hammann PE, Vilcinskas A (2019) Profiling antimicrobial peptides from the medical maggot Lucilia sericata as potential antibiotics for MDR gram-negative bacteria. J Antimicrob Chemother 74(1):96–107

    Article  CAS  PubMed  Google Scholar 

  • Hochvaldová L, Večeřová R, Kolář M, Prucek R, Kvítek L, Lapčík L, Panáček A (2022) Antibacterial nanomaterials: upcoming hope to overcome antibiotic resistance crisis. Nanotechnol Rev 11(1):1115–1142

    Article  Google Scholar 

  • Hu B, Owh C, Chee PL, Leow WR, Liu X, Wu YL, Guo P, Loh XJ, Chen X (2018) Supramolecular hydrogels for antimicrobial therapy. Chem Soc Rev 47(18):6917–6929

    Article  CAS  PubMed  Google Scholar 

  • Jäger J, Keese S, Roessle M, Steinert M, Schromm AB (2015) Fusion of Legionella pneumophila outer membrane vesicles with eukaryotic membrane systems is a mechanism to deliver pathogen factors to host cell membranes. Cell Microbiol 17(5):607–620

    Article  PubMed  Google Scholar 

  • Jain P, Chowdhury G, Samajpati S, Basak S, Ganai A, Samanta S, Okamoto K, Mukhopadhyay AK, Dutta S (2020) Characterization of non-typhoidal Salmonella isolates from children with acute gastroenteritis, Kolkata, India, during 2000–2016. Braz J Microbiol 51:613–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klaenhammer TR (1988) Bacteriocins of lactic acid bacteria. Biochimie 70(3):337–349

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Yang H, Ho MY, Xing B (2023) Recent advances of material-decorated photosynthetic microorganisms and their aspects in biomedical applications. Adv Opt Mater 9:2203038

    Article  Google Scholar 

  • Mohamed MF, Brezden A, Mohammad H, Chmielewski J, Seleem MN (2017) A short D-enantiomeric antimicrobial peptide with potent immunomodulatory and antibiofilm activity against multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii. Sci Rep 7(1):6953

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Muniz LR, Knosp C, Yeretssian G (2012) Intestinal antimicrobial peptides during homeostasis, infection, and disease. Front Immunol 9(3):310

    Google Scholar 

  • Muriana PM, Klaenhammer TR (1991) Cloning, phenotypic expression, and DNA sequence of the gene for lactacin F, an antimicrobial peptide produced by Lactobacillus spp. J Bacteriol 173(5):1779–1788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nadar S, Khan T, Patching SG, Omri A (2022) Development of antibiofilm therapeutics strategies to overcome antimicrobial drug resistance. Microorganisms 10(2):303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piri Gharaghie T, Doosti A, Mirzaei SA (2021) Detection of T6SS secretory system and membrane purine involved in antibiotic resistance in multidrug-resistant Acinetobacter baumannii isolates. J Microb World 14(1):47–58

    Google Scholar 

  • Piri-Gharaghie T, Jegargoshe-Shirin N, Saremi-Nouri S, Khademhosseini SH, Hoseinnezhad-Lazarjani E, Mousavi A, Kabiri H, Rajaei N, Riahi A, Farhadi-Biregani A, Fatehi-Ghahfarokhi S (2022a) Effects of imipenem-containing niosome nanoparticles against high prevalence methicillin-resistant Staphylococcus epidermidis biofilm formed. Sci Rep 12(1):5140

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Piri-Gharaghie T, Beiranvand S, Riahi A, Shirin NJ, Badmasti F, Mirzaie A, Elahianfar Y, Ghahari S, Ghahari S, Pasban K, Hajrasouliha S (2022b) Fabrication and characterization of thymol-loaded chitosan nanogels: improved antibacterial and anti-biofilm activities with negligible cytotoxicity. Chem Biodivers 19(3):e202100426

    Article  CAS  PubMed  Google Scholar 

  • Piri-Gharaghie T, Doosti A, Mirzaei SA (2023) Novel adjuvant nano-vaccine induced immune response against Acinetobacter baumannii. AMB Express 13(1):1–6

    Article  Google Scholar 

  • Pontes JT, Toledo Borges AB, Roque-Borda CA, Pavan FR (2022) Antimicrobial peptides as an alternative for the eradication of bacterial biofilms of multi-drug resistant bacteria. Pharmaceutics 14(3):642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasastha Ram V, Yasur J, Abishad P, Unni V, Purushottam Gourkhede D, Nishanth MA, Niveditha P, Vergis J, Singh Malik SV, Kullaiah B, Kurkure NV (2022) Antimicrobial efficacy of green synthesized nanosilver with entrapped cinnamaldehyde against multi-drug-resistant enteroaggregative Escherichia coli in Galleria mellonella. Pharmaceutics 14(9):1924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravn P, Arnau J, Madsen SM, Vrang A, Israelsen H (2003) Optimization of signal peptide SP310 for heterologous protein production in Lactococcus lactis. Microbiology 149(8):2193–2201

    Article  CAS  PubMed  Google Scholar 

  • Reynolds D, Burnham JP, Guillamet CV, McCabe M, Yuenger V, Betthauser K, Micek ST, Kollef MH (2022) The threat of multidrug-resistant/extensively drug-resistant gram-negative respiratory infections: another pandemic. Eur Respir Rev 31(166):220068

    Article  PubMed  PubMed Central  Google Scholar 

  • Shatzmiller S, Buzhansky L, Krieger R, Lapidot I, Zats GM, Kovaliov M (2022) Preferential eradication of gram-negative bacteria using peptide surrogates: cisions & reflections. Med Clin Res 7(8):13

    Google Scholar 

  • Tortorella A, Leone L, Lombardi A, Pizzo E, Bosso A, Winter R, Petraccone L, Del Vecchio P, Oliva R (2023) The impact of N-glycosylation on the properties of the antimicrobial peptide LL-III. Sci Rep 13(1):3733

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Valle DL Jr, Andrade JI, Puzon JJ, Cabrera EC, Rivera WL (2015) Antibacterial activities of ethanol extracts of Philippine medicinal plants against multidrug-resistant bacteria. Asian Pac J Trop Biomed 5(7):532–540

    Article  Google Scholar 

  • Verma A, Uzun O, Hu Y, Hu Y, Han HS, Watson N, Chen S, Irvine DJ, Stellacci F (2008) Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nat Mater 7(7):588–595

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Virdi AS, Singh N (2017) Antimicrobial peptides and polyphenols: implications in food safety and preservation. In: Microbial control and food preservation: theory and practice. pp 117–152

  • Yang M, Liu S, Zhang C (2023) Antimicrobial peptides with antiviral and anticancer properties and their modification and nanodelivery systems. Curr Res Biotechnol 6:100121

    Article  Google Scholar 

  • Yu B, Roy Choudhury M, Yang X, Benoit SL, Womack E, Van Mouwerik LK, Acharya A, Kumar A, Yang C, Pavlova A, Zhu M (2022) Restoring and enhancing the potency of existing antibiotics against drug-resistant gram-negative bacteria through the development of potent small-molecule adjuvants. ACS Infect Dis 8(8):1491–1508

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the staff members of the Biotechnology Research Center of the Islamic Azad University of Shahrekord Branch in Iran for their help and support. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

MSD conducted research and drafted the manuscript, AD conceived and designed research and made manuscript revision, OC, MA and RK designed research and analyzed data, AD provided funding support. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Abbas Doosti.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval and consent

Not applicable.

Consent to publish

Not applicable.

Additional information

Communicated by Javad Sharifi Rad.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1251 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safarpour-Dehkordi, M., Chabok, O., Asgari, M. et al. A comprehensive investigation of the medicinal efficacy of antimicrobial fusion peptides expressed in probiotic bacteria for the treatment of pan drug-resistant (PDR) infections. Arch Microbiol 206, 93 (2024). https://doi.org/10.1007/s00203-023-03823-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00203-023-03823-2

Keywords

Navigation