Skip to main content
Log in

Transcriptomic analysis of Ralstonia solanacearum in response to antibacterial volatiles of Bacillus velezensis FZB42

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Volatile organic compounds (VOCs), produced by a variety of microbial species and used as biological agents, have been demonstrated to play a significant role in controlling phytopathogens. In continuation of our previous studies, we aim to elucidate the underlying mechanisms and pathways involved in interactions between pathogens and microbial VOCs. In the current study, we tested how VOCs produced by Bacillus velezensis FZB42 affect the growth of Ralstonia solanacearum TBBS1 in vitro.Query The result showed that the colony growth of R. solanacearum was reduced with an inhibition rate of 0.83 ± 0.043 as compared to the control 1.7 ± 0.076, respectively. The number of viable cells of R. solanacearum was significantly decreased to 7.68 CFU/mL as compared to the control (9.02 CFU/mL). In addition, transcriptomic analysis of R. solanacearum in response to VOCs produced by FZB42 was performed to better understand the effect of VOCs on R. solanacearum. The transcriptional response of R. solanacearum to FZB42-VOCs was determined using an Illumina RNA-seq approach. The results revealed significant changes in the expression of 2094 R. solanacearum genes, including 593 upregulated and 1501 downregulated genes. To validate the RNA-seq results, the expression of 10 genes was quantified using RT-qPCR. Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases were used to functionally annotate differentially expressed genes. Significant changes were observed in genes directly or indirectly related to virulence, including those related to bacterial invasion, motility, chemotaxis, and secretion systems. Overall, RNA-seq profiling provides new insights into the possible fundamental molecular mechanisms that are responsible for the reduction in growth and virulence of R. solanacearum upon application of FZB42-VOC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmed W et al (2022a) Ralstonia solanacearum, a deadly pathogen: Revisiting the bacterial wilt biocontrol practices in tobacco and other Solanaceae. Rhizosphere 1:100479

    Article  Google Scholar 

  • Ahmed W et al (2022b) Bacillus amyloliquefaciens WS-10 as a potential plant growth-promoter and biocontrol agent for bacterial wilt disease of flue-cured tobacco. Egypt J Biol Pest Control 32(1):1–14

    Article  Google Scholar 

  • Annadurai RS et al (2012) Next generation sequencing and de novo transcriptome analysis of Costus pictus D. Don, a non-model plant with potent anti-diabetic properties. BMC Genomics 13(1):1–15

    Article  Google Scholar 

  • Asolkar T, Ramesh R (2020) The involvement of the Type Six Secretion System (T6SS) in the virulence of Ralstonia solanacearum on brinjal. 3 Biotech 10(7):324

    Article  PubMed  PubMed Central  Google Scholar 

  • Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 1:1165–1188

    Google Scholar 

  • Chen K et al (2020) Bacillus species as potential biocontrol agents against citrus diseases. Biol Control 151:104419

    Article  CAS  Google Scholar 

  • Chen M et al (2022) A CysB regulator positively regulates cysteine synthesis, expression of type III secretion system genes, and pathogenicity in Ralstonia solanacearum. Mol Plant Pathol 23(5):679–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conesa A, Götz S (2008) Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int J Plant Genom 2008:1

    Article  Google Scholar 

  • Cornelis GR, Van Gijsegem F (2000) Assembly and function of type III secretory systems. Annu Rev Microbiol 54(1):735–774

    Article  CAS  PubMed  Google Scholar 

  • Cornelis GR et al (2006) Length control of extended protein structures in bacteria and bacteriophages. Curr Opin Microbiol 9(2):201–206

    Article  CAS  PubMed  Google Scholar 

  • Corral J et al (2020) Twitching and swimming motility play a role in Ralstonia solanacearum pathogenicity. Msphere 5(2):e00740-e1719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coutinho T (2005) Introduction and prospectus on the survival of R. solanacearum. Bacterial Wilt Disease Ralstonia Solanacearum Species Complex 1:29–38

    Google Scholar 

  • Digonnet C et al (2012) Deciphering the route of Ralstonia solanacearum colonization in Arabidopsis thaliana roots during a compatible interaction: focus at the plant cell wall. Planta 236:1419–1431

    Article  CAS  PubMed  Google Scholar 

  • Elsayed TR et al (2020) Biocontrol of bacterial wilt disease through complex interaction between tomato plant, antagonists, the indigenous rhizosphere microbiota, and Ralstonia solanacearum. Front Microbiol 10:2835

    Article  PubMed  PubMed Central  Google Scholar 

  • Fialho MB et al (2010) Volatile organic compounds produced by Saccharomyces cerevisiae inhibit the in vitro development of Guignardia citricarpa, the causal agent of citrus black spot. World J Microbiol Biotechnol 26:925–932

    Article  CAS  Google Scholar 

  • Guo Q et al (2014) Complete genome sequence of Bacillus subtilis BAB-1, a biocontrol agent for suppression of tomato gray mold. Genome Announc 2(4):e00744-e1714

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang G et al (2016) Modeling and experimental determination of infection bottleneck and within-host dynamics of a soil-borne bacterial plant pathogen. bioRxiv 1:061408

    Google Scholar 

  • Jinal NH, Amaresan N (2020) Evaluation of biocontrol Bacillus species on plant growth promotion and systemic-induced resistant potential against bacterial and fungal wilt-causing pathogens. Arch Microbiol 202(7):1785–1794

    Article  CAS  PubMed  Google Scholar 

  • Kim B-S et al (2016) Bacterial wilt disease: Host resistance and pathogen virulence mechanisms. Physiol Mol Plant Pathol 95:37–43

    Article  Google Scholar 

  • Lahlali R et al (2022) Biological control of plant pathogens: A global perspective. Microorganisms 10(3):596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee B et al (2012) Induced resistance by a long-chain bacterial volatile: elicitation of plant systemic defense by a C13 volatile produced by Paenibacillus polymyxa. PLoS ONE 7(11):e48744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leiman PG et al (2009) Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc Natl Acad Sci 106(11):4154–4159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemfack MC et al (2014) mVOC: a database of microbial volatiles. Nucleic Acids Res 42(D1):D744–D748

    Article  CAS  PubMed  Google Scholar 

  • Li R et al (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25(15):1966–1967

    Article  CAS  PubMed  Google Scholar 

  • Liu H et al (2005) Pyramiding unmarked deletions in Ralstonia solanacearum shows that secreted proteins in addition to plant cell-wall-degrading enzymes contribute to virulence. Mol Plant Microbe Interact 18(12):1296–1305

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the \(2^{-\Delta \Delta {\rm C}_{\text{T}}}\) method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  • Lowe-Power TM et al (2018) Metabolomics of tomato xylem sap during bacterial wilt reveals Ralstonia solanacearum produces abundant putrescine, a metabolite that accelerates wilt disease. Environ Microbiol 20(4):1330–1349

    Article  CAS  PubMed  Google Scholar 

  • Maji S, Chakrabartty P (2014) Biocontrol of bacterial wilt of tomato caused by’Ralstonia solanacearum’by isolates of plant growth promoting rhizobacteria. Aust J Crop Sci 8(2):208–214

    Google Scholar 

  • Mansfield J et al (2012) Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol 13(6):614–629

    Article  PubMed  PubMed Central  Google Scholar 

  • Massawe VC et al (2018) Volatile compounds of endophytic Bacillus spp. have biocontrol activity against Sclerotinia sclerotiorum. Phytopathology 108(12):1373–1385

    Article  CAS  PubMed  Google Scholar 

  • Meyer E, Aglyamova GV, Wang S, Buchanan-Carter J, Abrego D, Colbourne JK, Willis BL, Matz MV (2009) Sequencing and de novo analysis of a coral larval transcriptome using 454 GSFlx. BMC Genom 10:219

    Article  Google Scholar 

  • Mitchell AM et al (2009) Volatile antimicrobials from Muscodor crispans, a novel endophytic fungus. Microbiology 156(1):270–277

    Article  PubMed  Google Scholar 

  • Mohamed BF et al (2020) Approving the biocontrol method of potato wilt caused by Ralstonia solanacearum (Smith) using Enterobacter cloacae PS14 and Trichoderma asperellum T34. Egypt J Biol Pest Control 30:1–13

    Article  Google Scholar 

  • Mortazavi A et al (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5(7):621–662

    Article  CAS  PubMed  Google Scholar 

  • Poueymiro M et al (2009) Two type III secretion system effectors from Ralstonia solanacearum GMI1000 determine host-range specificity on tobacco. Mol Plant Microbe Interact 22(5):538–550

    Article  CAS  PubMed  Google Scholar 

  • Rajer FU et al (2017) Volatile organic compounds produced by a soil-isolate, Bacillus subtilis FA26 induce adverse ultra-structural changes to the cells of Clavibacter michiganensis ssp. sepedonicus, the causal agent of bacterial ring rot of potato. Microbiology 163(4):523–530

    Article  CAS  PubMed  Google Scholar 

  • Ray SK et al (2015) rpoN1, but not rpoN2, is required for twitching motility, natural competence, growth on nitrate, and virulence of Ralstonia solanacearum. Front Microbiol 6:229

    Article  PubMed  PubMed Central  Google Scholar 

  • Raza W et al (2016a) Volatile organic compounds produced by Pseudomonas fluorescens WR-1 restrict the growth and virulence traits of Ralstonia solanacearum. Microbiol Res 192:103–113

    Article  CAS  PubMed  Google Scholar 

  • Raza W et al (2016b) Response of tomato wilt pathogen Ralstonia solanacearum to the volatile organic compounds produced by a biocontrol strain Bacillus amyloliquefaciens SQR-9. Sci Rep 6(1):1–13

    Article  Google Scholar 

  • Raza W et al (2016c) Effects of volatile organic compounds produced by Bacillus amyloliquefaciens on the growth and virulence traits of tomato bacterial wilt pathogen Ralstonia solanacearum. Appl Microbiol Biotechnol 100:7639–7650

    Article  CAS  PubMed  Google Scholar 

  • Suresh P et al (2022) Pseudomonas fluorescens VSMKU3054 mediated induced systemic resistance in tomato against Ralstonia solanacearum. Physiol Mol Plant Pathol 119:101836

    Article  CAS  Google Scholar 

  • Swanson JK et al (2005) Behavior of Ralstonia solanacearum race 3 biovar 2 during latent and active infection of geranium. Phytopathology 95(2):136–143

    Article  PubMed  Google Scholar 

  • Tahir HA et al (2017a) Plant growth promotion by volatile organic compounds produced by Bacillus subtilis SYST2. Front Microbiol 8:171

    Article  PubMed  PubMed Central  Google Scholar 

  • Tahir HAS et al (2017b) Bacillus volatiles adversely affect the physiology and ultra-structure of Ralstonia solanacearum and induce systemic resistance in tobacco against bacterial wilt. Sci Rep 7(1):40481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tans-Kersten J et al (2004) Swimming motility, a virulence trait of Ralstonia solanacearum, is regulated by FlhDC and the plant host environment. Mol Plant Microbe Interact 17(6):686–695

    Article  CAS  PubMed  Google Scholar 

  • Trapnell C et al (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25(9):1105–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang N et al (2019) Plant root exudates are involved in Bacillus cereus AR156 mediated biocontrol against Ralstonia solanacearum. Front Microbiol 10:98

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei Z et al (2018) Ralstonia solanacearum pathogen disrupts bacterial rhizosphere microbiome during an invasion. Soil Biol Biochem 118:8–17

    Article  CAS  Google Scholar 

  • Weisskopf L (2013) The potential of bacterial volatiles for crop protection against phytophathogenic fungi. Microbial Pathogens Strategies Combat Them: Sci, Technol Educ 2:1352–1363

    Google Scholar 

  • Xie S et al (2018) Antibacterial effects of volatiles produced by Bacillus strain D13 against Xanthomonas oryzae pv. oryzae. Mol Plant Pathol 19(1):49–58

    Article  CAS  PubMed  Google Scholar 

  • Xue H et al (2020) Insights into the root invasion by the plant pathogenic bacterium Ralstonia solanacearum. Plants 9(4):516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanti Y et al (2018) Characterizations of endophytic Bacillus strains from tomato roots as growth promoter and biocontrol of Ralstonia solanacearum. Biodiversitas J Biol Divers 19(3):906–911

    Article  Google Scholar 

  • Yao J, Allen C (2006) Chemotaxis is required for virulence and competitive fitness of the bacterial wilt pathogen Ralstonia solanacearum. J Bacteriol 188(10):3697–3708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yousefvand M et al (2023) Volatile compounds produced by endophytic bacteria adversely affect the virulence traits of Ralstonia solanacearum. Biol Control 178:105145

    Article  CAS  Google Scholar 

  • Yuan X et al (2020) Innovation and application of the type III secretion system inhibitors in plant pathogenic bacteria. Microorganisms 8(12):1956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L et al (2012) TssM is essential for virulence and required for type VI secretion in Ralstonia solanacearum. J Plant Dis Prot 119:125–134

    Article  CAS  Google Scholar 

  • Zhang C et al (2017) Overexpression of a novel peanut NBS-LRR gene A h RRS 5 enhances disease resistance to R alstonia solanacearum in tobacco. Plant Biotechnol J 15(1):39–55

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by National Key R&D Plan Intergovernmental International Science and Technology Innovation Cooperation Project (2022YFE0121800), National Natural Science Foundation of China (31972325, 32172490), and Natural Science Foundation for Excellent Youth Scholars of Jiangsu Province, China (BK20200078).

Author information

Authors and Affiliations

Authors

Contributions

H.W. and H.A.S.T. planned and designed this research; H.A.S.T. and Q.A performed research, methodology, and writing and editing. F.U.R., W.G., H.M.A.T., and R.B. helped with the analysis and compiled the results and data of the manuscript; F.U.R., Q.S., A.R.K., and Q.A. helped with the experiments and improved the writing. Q.G., X.G., and H.W. contributed to the critical revision of the manuscript. All the authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Huijun Wu.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Additional information

Communicated by Yusuf Akhter.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (RAR 3385 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tahir, H.A.S., Ali, Q., Rajer, F.U. et al. Transcriptomic analysis of Ralstonia solanacearum in response to antibacterial volatiles of Bacillus velezensis FZB42. Arch Microbiol 205, 358 (2023). https://doi.org/10.1007/s00203-023-03697-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00203-023-03697-4

Keywords

Navigation