Skip to main content
Log in

Expansion of carbon source utilization range of Shewanella oneidensis for efficient azo dye wastewater treatment through co-culture with Lactobacillus plantarum

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Shewanella oneidensis has demonstrated excellent potential for azo dye decolorization and degradation. However, in anaerobic environments, S. oneidensis has a narrow carbon source spectrum, which requires additional electron donors, such as sodium lactate. This increases the practical application costs for wastewater treatment. Here, we aimed to expand the carbon source utilization range of S. oneidensis FJAT-2478 by co-culturing it with Lactobacillus plantarum FJAT-7926, leveraging their commensalism relationship to develop a metabolic chain. Results showed that a 1:2 initial ratio of L. plantarum FJAT-7926 to S. oneidensis FJAT-2478 achieved a 97.16% decolorization rate of methyl orange when glucose served as the sole carbon source. This co-culture system achieved a decolorization rate comparable to that obtained using sodium lactate as an electron donor and was significantly higher than that achieved by L. plantarum FJAT-7926 (7.88%) or S. oneidensis FJAT-2478 (6.89%) alone. After undergoing five cycles, the co-culture system continued to exhibit effective decolorization. It was demonstrated that the co-culture system could use common and inexpensive carbon sources, such as starch, molasses, sucrose, and maltose, to decolorize azo dyes. For instance, 100 mg/L methyl orange could be degraded by over 98.05% within 24 h. The results indicated that the degradation rates of methyl orange were higher when L. plantarum was inoculated first, followed by a subsequent inoculation of S. oneidensis after 2 h. The co-culturing of L. plantarum FJAT-7926 and S. oneidensis FJAT-2478 proved to be an effective strategy in treating azo dye wastewater, expanding the potential practical applications of S. oneidensis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Download references

Funding

This work was financially supported by Fujian Special Fund for Public Interest Research (grant no: 2021R1034004).

Author information

Authors and Affiliations

Authors

Contributions

Yanbo Li performed the experiment, data analyses and wrote the main manuscript text; Guohong Liu helped perform the analysis with constructive discussions; Huai Shi contributed to the conception of the study. All authors reviewed the manuscript.

Corresponding author

Correspondence to Huai Shi.

Ethics declarations

Conflict of interest

The authors declared that they had no conflict of interest.

Ethical statement

This article did not contain any studies with animals performed by any of the authors.

Additional information

Communicated by Sunita Varjani.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 296 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Liu, G. & Shi, H. Expansion of carbon source utilization range of Shewanella oneidensis for efficient azo dye wastewater treatment through co-culture with Lactobacillus plantarum. Arch Microbiol 205, 297 (2023). https://doi.org/10.1007/s00203-023-03634-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00203-023-03634-5

Keywords

Navigation