Skip to main content
Log in

The possibility of using Serratia isolates for the production of biopreparations in the protection of plants against diseases and pests

  • Mini Review
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The agriculture is extremely important for the life of human beings. Therefore, it is needed to control the enemies that destroy vast areas of crops causing great economic losses. Chemical pesticides were the option for many decades, but the damage that they cause to environment and human health led to the idea of changing the use of these for more sustainable options such as biopesticides as a biological control. Among microbial pesticides, Serratia species have been found as suitable options to apply against several pests or pathogens. Serratia species produce a wide range of secondary metabolites with several biological activities such as antifungal, antibacterial, and pesticides which can be used in sustainable agriculture. It has been reported that several Serratia species are able to suppress some crop diseases caused by Fusarium oxysporum, Rhizoctonia solani, Phytophthora parasitica, Sclerotinia sclerotiorum, Verticillium dahlia, and Phytophthora capsici among others. Therefore, they have been used as biocontrol agents in agriculture. In this review, we summarized the genus Serratia describing its history and development and the metabolites it secretes, which are responsible for their antibacterial and antifungal activity. We have analyzed the insecticide capacity of several Serratia species as well antifungal properties of Serratia species against most important crops’ pathogens. In conclusion, the use of Serratia as a biological control agent against plant pathogens can be a good option for a sustainable agriculture. More work is needed to assess the safety of the isolated new strains and their effectiveness against pathogens in in vivo conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

This is a review article, and no data were generated during manuscript preparation.

Code availability

Not applicable.

References

  • Aggarwal C, Paul S, Tripathi V, Paul B, Khan MA (2017) Characterization of putative virulence factors of Serratia marcescens strain SEN for pathogenesis in Spodoptera litura. J Invertebr Pathol 143:115–123

    Article  CAS  PubMed  Google Scholar 

  • Alstrom S (2001) Characteristics of bacteria from oil seed rape in relation to their biocontrol of activity against Verticillium dahliae. J Phytopathol 149:57–64

    Article  Google Scholar 

  • Chakraborty U, Chakraborty CN, Chakraborty AP (2010) Influence of Serratia marcescens TRS-1 on growth promotion and induction of resistance in Camellia sinensis against Fomes lamaoensis. J Plant Interac 5:261–272

    Article  CAS  Google Scholar 

  • Chlebek D, Grebtsova V, Piński A, Żur-Pińska J, Hupert-Kocurek K (2022) Genetic determinants of antagonistic interactions and the response of new endophytic strain Serratia quinivorans KP32 to fungal phytopathogens. Int J Mol Sci 23:15561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clements T, Ndlovu T, Khan S, Khan W (2019a) Biosurfactants produced by Serratia species: classification, biosynthesis, production and application. Appl Microbiol Biotechnol 103:589–602

    Article  CAS  PubMed  Google Scholar 

  • Clements T, Ndlovu T, Khan W (2019b) Broad-spectrum antimicrobial activity of secondary metabolites produced by Serratia marcescens strains. Microbiol Res 229:126329

    Article  CAS  PubMed  Google Scholar 

  • Clements T, Rautenbach M, Ndlovu T, Khan S, Khan W (2021) A metabolomics and molecular networking approach to elucidate the structures of secondary metabolites produced by Serratia marcescens strains. Front Chem 9:633870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das P, Effmert U, Baermann G, Quella M, Piechulla B (2022) Impact of bacterial volatiles on phytopathogenic fungi: an in vitro study on microbial competition and interaction. J Exp Bot 73:596–614

    Article  CAS  PubMed  Google Scholar 

  • Domik D, Thürmer A, Weise T, Brandt W, Daniel R, Piechulla B (2016) A terpene synthase is involved in the synthesis of the volatile organic compound sodorifen of Serratia plymuthica 4Rx13. Front Microbiol 7:737

    Article  PubMed  PubMed Central  Google Scholar 

  • Dutta S, Khatun A, Gupta DR, Surovy MZ, Rahman MM, Mahmud NU, Emes RD, Warry A, West HM, Clarke ML, Hoque MN, Hossain MM, Salam MA, Islam MT (2020) Whole-genome sequence of a plant growth-promoting strain, Serratia marcescens BTL07, isolated from the rhizoplane of Capsicum annuum L. Microbiol Resour Announc 9(18):e01484-e1519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eckelmann D, Spiteller M, Kusari S (2018) Spatial-temporal profiling of prodiginines and serratamolides produced by endophytic Serratia marcescens harbored in Maytenus serrata. Sci Rep 8:52835

    Article  Google Scholar 

  • Faltin F, Lottmann J, Grosch R, Berg G (2004) Strategy to select and assess antagonistic bacteria for biological control of Rhizoctonia solani Kühn. Can J Microbiol 50:811–820

    Article  CAS  PubMed  Google Scholar 

  • Fatiah R, Sulianyah I, Tjong DH, Jamsari J (2021) Comparative genomic of biosynthetic gene cluster of andrimid antibiotic from Serratia plymuthica UBCF_13. IOP Conf Ser 741:012037

    Article  Google Scholar 

  • Fekrirad Z, Gattali B, Kashef N (2020) Quorum sensing-regulated functions of Serratia marcescens are reduced by eugenol. Iran J Microbiol 12:451–459

    PubMed  PubMed Central  Google Scholar 

  • Ferraz HGM, Resende RS, Moreira PC, Silveira PR, Milagres EA, Oliveira JR, Rodrigues FA (2015) Antagonistic rhizobacteria and jasmonic acid induce resistance against tomato bacterial spot. Plant Prot 74:417–427

    CAS  Google Scholar 

  • Gamliel A, Grinstein A, Peretz Y et al (1997) Reduced dosage of methyl bromide for controlling verticillium wilt of potato in experimental and commercial plots. Plant Dis 81:469–474

    Article  CAS  PubMed  Google Scholar 

  • Gerc AJ, Song L, Challis GL, Stanley-Wall NR, Coulthurst SJ (2012) The insect pathogen Serratia marcescens Db10 uses a hybrid non-ribosomal peptide synthetase-polyketide synthase to produce the antibiotic althiomycin. PLoS One 7:e44673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glare TR, O’Callaghan M (2019) Microbial biopesticides for control of invertebrates: progress from New Zealand. J Invertebr Pathol 165:82–88

    Article  CAS  PubMed  Google Scholar 

  • Glare TR, Jurat-Fuentes J-L, Ocallaghan M (2017) Basic and applied research: entomopathogenic bacteria. In: Lacey LA (ed) Microbial control of insect and mite pests. Academic Press, Cambridge, pp 47–67

    Chapter  Google Scholar 

  • Grimont F, Grimont PAD (2006) The Genus Serratia. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The Prokaryotes. Springer, New York, NY. https://doi.org/10.1007/0-387-30746-X_11

    Chapter  Google Scholar 

  • Heu K, Romoli O, Schönbeck JC, Ajenoe R, Epelboin Y, Kircher V, Houël E, Estevez Y, Gendrin M (2021) The effect of secondary metabolites produced by Serratia marcescens on Aedes aegypti and its microbiota. Front Microbiol 12:645701

    Article  PubMed  PubMed Central  Google Scholar 

  • Hurst MRH, Beattie A, Jones SA, Laugraud A, van Koten C, Harper L (2018) Serratia proteamaculans strain AGR96X encodes an antifeeding prophage (Tailocin) with activity against grass grub (Costelytra giveni) and manuka beetle (Pyronota Species) larvae. Appl Environ Microbiol 84:e02739-e2817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ilhan K, Karabulut OA (2013) Efficacy and population monitoring of bacterial antagonists for gray mold (Botrytis cinerea Pers. ex. Fr.) infecting strawberries. Biocontrol 58:457–470

    Article  CAS  Google Scholar 

  • Jackson TA, Zimmermann G (1996) Is there a role for Serratia spp. in the biocontrol of Melolontha spp. Bull OILB/SROP 19:47–53

    Google Scholar 

  • Kai M, Effmert U, Berg G, Piechulla B (2007) Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen Rhizobacteria solani. Arch Microbiol 187:351–360

    Article  CAS  PubMed  Google Scholar 

  • Kalbe C, Marten P, Berg G (1996) Members of the genus Serratia as beneficial rhizobacteria of oilseed rape. Microbiol Res 151:433–439

    Article  CAS  PubMed  Google Scholar 

  • Kamensky M, Ovadis M, Chet I, Chernin L (2003) Soil-borne strain IC14 of Serratia plymuthica with multiple mechanisms of antifungal activity provides biocontrol of Botrytis cinerea and Sclerotinia sclerotiorum diseases. Soil Biol Biochem 35:323–331

    Article  CAS  Google Scholar 

  • Kanchiswamy CN, Malnoy M, Maffei ME (2015) Chemical diversity of microbial volatiles and their potential for plant growth and productivity. Front Plant Sci 6:151

    Article  PubMed  PubMed Central  Google Scholar 

  • Keswani C, Singh HB, García-Estrada C, Caradus J, He YW, Mezaache-Aichour S, Glare TR, Borriss R, Sansinenea E (2020) Antimicrobial secondary metabolites from agriculturally important bacteria as next-generation pesticides. Appl Microbiol Biotechnol 104:1013–1034

    Article  CAS  PubMed  Google Scholar 

  • Khalifa A (2022) First isolation and characterization of Serratia liquefaciens associated with rot disease of Malus domestica (apple) fruit and its inhibition by Origanum vulgare (oregano) oil. Horticulturae 8:752

    Article  Google Scholar 

  • Khanna A, Khanna M, Aggarwal A (2013) Serratia marcescens- a rare opportunistic nosocomial pathogen and measures to limit its spread in hospitalized patients. J Clin Diagnostic Res 7:243–246

    Google Scholar 

  • Kshetri L, Naseem F, Pandey P (2019) Role of Serratia sp. as biocontrol agent and plant growth stimulator, with prospects of biotic stress management in plant. In: Sayyed R (ed) Plant growth promoting rhizobacteria for sustainable stress management microorganisms for sustainability, vol 13. Springer, Singapore, pp 169–200

    Google Scholar 

  • Kumari I, Hussain R, Sharma S, Geetika AM (2022) Microbial biopesticides for sustainable agricultural practices. In: Rakshit A, Meena VS, Abhilash PC, Sarma BK, Singh HB, Fraceto L, Parihar M, Singh AK (eds) In advances in bio-inoculant science, biopesticides. Woodhead Publishing, Sawston, pp 301–317

    Google Scholar 

  • Kurze S, Bahl H, Dahl R, Berg G (2001) Biological control of fungal strawberry diseases by Serratia plymuthica HRO-C48. Plant Dis 85:529–534

    Article  PubMed  Google Scholar 

  • Lacey LA, Siegel JP (2000) Safety and ecotoxicology of entomopathogenic bacteria. Entomopathogenic bacteria: from laboratory to field application. Kluwer Academic Publishers, Dordrecht, pp 253–273

    Chapter  Google Scholar 

  • Lavania M, Chauhan PS, Chauhan SV, Singh HB, Nautiyal CS (2006) Induction of plant defense enzymes and phenolics by treatment with plant growth promoting rhizobacterial Serratia marcescens NBRII213. Curr Microbiol 52:363–368

    Article  CAS  PubMed  Google Scholar 

  • Leng P, Zhang Z, Pan G, Zhao M (2011) Applications and development trends in biopesticides. Afr J Biotechnol 10:19864–19873

    CAS  Google Scholar 

  • Liu L, Kloepper JW, Tuzun S (1995) Induction of systemic resistance in cucumber against Fusarium wilt by plant growth promoting rhizobacteria. Phytopathol 85:695–698

    Article  Google Scholar 

  • Mandakini HT, Manamgoda DS (2021) Microbial biopesticides: development and application. In: Bhatt P, Gangola S, Udayanga D, Kumar G (eds) Microbial technology for sustainable environment. Springer, Singapore. https://doi.org/10.1007/978-981-16-3840-4_10

    Chapter  Google Scholar 

  • Masschelein J, Clauwers C, Stalmans K, Nuyts K, De Borggraeve W, Briers Y, Aertsen A, Michiels CW, Lavigne R (2015) The zeamine antibiotics affect the integrity of bacterial membranes. Appl Environ Microbiol 81:1139–1146

    Article  PubMed  PubMed Central  Google Scholar 

  • Matilla MA, Leeper FJ, Salmond GP (2015) Biosynthesis of the antifungal haterumalide, oocydin A, in Serratia, and its regulation by quorum sensing, RpoS and Hfq. Environ Microbiol 17:2993–3008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matilla MA, Udaondo Z, Salmond GPC (2018) Genome sequence of the Oocydin A-producing rhizobacterium Serratia plymuthica 4Rx5. Microbiol Resour Announc 7:e00997-e1018

    Article  PubMed  PubMed Central  Google Scholar 

  • Mazid S, Kalita JC, Rajkhowa RC (2011) A review on the use of biopesticides in insect pest management. Int J Adv Sci Technol 1:169–178

    Google Scholar 

  • Mello IS, Targanski S, Pietro-Souza W, Stachack FFF, Terezo AJ, Soares MA (2020) Endophytic bacteria stimulate mercury phytoremediation by modulating its bioaccumulation and volatilization. Ecotoxicol Environ Saf 202:110818

    Article  CAS  PubMed  Google Scholar 

  • Morán-Diez ME, Glare TR (2016) What are microbial-based biopesticides? Methods Mol Biol 1477:1–10

    Article  PubMed  Google Scholar 

  • Niu H, Sun Y, Zhang Z, Zhao D, Wang N, Wang L, Guo H (2022) The endophytic bacterial entomopathogen Serratia marcescens promotes plant growth and improves resistance against Nilaparvata lugens in rice. Microbiol Res 256:126956

    Article  CAS  PubMed  Google Scholar 

  • O’Callaghan M, Gerard FM (2005) Establishment of Serratia entomophila in soil from a granular formulation. N Z Plant Prot 58:122–125

    Google Scholar 

  • O’Callaghan M, Garnham ML, Nelson TL, Baird D, Jackson TA (1996) The pathogenicity of Serratia strains to Lucilia sericata (Diptera: Calliphoridae). J Invertebr Pathol 68:22–27

    Article  PubMed  Google Scholar 

  • Patil CD, Patil SV, Salunke BK, Salunkhe RB (2011) Prodigin produced by Serratia marcescens NMCC46 as a mosquito larvicidal agent against Aedes aegypti and Anopheles stephensi. Parasitol Res 109:1179–1187

    Article  PubMed  Google Scholar 

  • Raajimakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moenne-Loccoz Y (2009) The rhizosphere. A play ground and battle field for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361

    Article  Google Scholar 

  • Ruiu L (2015) Insect pathogenic bacteria in integrated pest management. Insects 6:352–367

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruiu L (2018) Microbial biopesticides in agroecosystems. Agronomy 8:235

    Article  CAS  Google Scholar 

  • Shanks RMQ, Stella NA, Lahr RM, Wang S, Veverka TI, Kowalski RP et al (2012) Serratamolide is a hemolytic factor produced by Serratia marcescens. PLoS One 7:e36398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slater H, Crow M, Everson L, Salmond GPC (2003) Phosphate availability regulates biosynthesis of two antibiotics, prodigiosin and carbapenem, in Serratia via both quorum-sensing-dependent and -independent pathways. Mol Microbiol 47:303–320

    Article  CAS  PubMed  Google Scholar 

  • Soenens A, Imperial J (2020) Biocontrol capabilities of the genus Serratia. Phytochem Rev 19:577–587

    Article  CAS  Google Scholar 

  • Someya N, Nakajima M, Yamaguchi I, Akutsu K (2002) Induced resistance to rice blast by antagonistic bacterium, Serratia marcescens strain B2. J Gen Plant Pathol 68:177–182

    Article  CAS  Google Scholar 

  • Strobel G, Li JY, Sugawara F, Koshino H, Harper J, Hess WM (1999) Oocydin A, a chlorinated macrocyclic lactone with potent anti-oomycete activity from Serratia marcescens. Microbiology 145:3557–3564

    Article  CAS  PubMed  Google Scholar 

  • Sturz AV, Peters RD, Carter MR, Sanderson JB, Matheson BG, Christie BR (2005) Variation in antibiosis ability, against potato pathogens, of bacterial communities recovered from the endo and exoroots of potato crops produced under conventional versus minimum tillage systems. Can J Microbiol 51:643–654

    Article  CAS  PubMed  Google Scholar 

  • Suryawanshi R, Patil C, Koli S et al (2017) Antimicrobial activity of prodigiosin is attributable to plasma-membrane damage. Nat Prod Res 31:572–577

    Article  CAS  PubMed  Google Scholar 

  • Sutio G, Afifah AN, Maharani R, Basri M (2023) Serratia marcescens strain NPKC3_2_21 as endophytic phosphate solubilizing bacteria and entomopathogen: promising combination approach as rice biofertilizer and biopesticide. Biodiversitas 24:901–909

    Google Scholar 

  • Taghavi S, Garafola C, Monchy S, Newman L, Hoffman A, Weyens N, Barac T, Vangronsveld J, van der Lelie D (2009) Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl Environ Microbiol 75:748–757

    Article  CAS  PubMed  Google Scholar 

  • Tamma PD, Aitken SL, Bonomo RA, Mathers AJ, Van Duin D, Clancy CJ (2022) Infectious Diseases society of america guidance on the treatment of AmpC β-lactamase-producing enterobacterales, carbapenem-resistant Acinetobacter baumannii, and Stenotrophomonas maltophilia Infections. Clin Infect Dis 74:2089–2114

    Article  CAS  PubMed  Google Scholar 

  • Tavares-Carreon F, De Anda-Mora K, Rojas-Barrera IC, Andrade A (2023) Serratia marcescens antibiotic resistance mechanisms of an opportunistic pathogen: a literature review. PeerJ 11:e14399

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomson NR, Crow MA, McGowan SJ, Cox A, Salmond GP (2000) Biosynthesis of carbapenem antibiotic and prodigiosin pigment in Serratia is under quorum sensing control. Mol Microbiol 36:539–556

    Article  CAS  PubMed  Google Scholar 

  • Varma A, Bakshi M, Lou B, Hartmann A, Oelmueller R (2012) Piriformospora indica: a novel plant growth-promoting mycorrhizal fungus. Agric Res 1(2):117–131

    Article  Google Scholar 

  • Vaughan AL, Altermann E, Glare TR, Hurst MR (2022) Genome sequence of the entomopathogenic Serratia entomophila isolate 626 and characterisation of the species specific itaconate degradation pathway. BMC Genom 23:728

    Article  CAS  Google Scholar 

  • von Reuss S, Domik D, Lemfack MC, Magnus N, Kai M, Weise T, Piechulla B (2018) Sodorifen biosynthesis in the rhizobacterium Serratia plymuthica involves methylation and cyclization of MEP-derived farnesyl pyrophosphate by a SAM-dependent C-methyltransferase. J Am Chem Soc 140:11855–11862

    Article  Google Scholar 

  • Williams DJ, Grimont PAD, Cazares A et al (2022) The genus Serratia revisited by genomics. Nat Commun 13:5195. https://doi.org/10.1038/s41467-022-32929-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Vicerrectoría de Investigación y Estudios de Posgrado (VIEP) de la Benemérita Universidad Autónoma de Puebla (Puebla, Mexico) [100518932-2022] is acknowledged for financial support.

Funding

Vicerrectoría de Investigación y Estudios de Posgrado, 100518932-2022, 100518932-2022.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed equally to the MS. All authors have written and revised carefully the MS. All the authors have read and approved the manuscript.

Corresponding author

Correspondence to Estibaliz Sansinenea.

Ethics declarations

Conflict of interest

All the authors declare no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent for publication

All authors have provided consent to jointly publish this review article.

Additional information

Communicated by Yusuf Akhter.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ortiz, A., Sansinenea, E. The possibility of using Serratia isolates for the production of biopreparations in the protection of plants against diseases and pests. Arch Microbiol 205, 288 (2023). https://doi.org/10.1007/s00203-023-03633-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00203-023-03633-6

Keywords

Navigation