Skip to main content
Log in

Genome mining to identify valuable secondary metabolites and their regulation in Actinobacteria from different niches

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Actinobacteria are the largest bacteria group with 18 significant lineages, which are ubiquitously distributed in all the possible terrains. They are known to produce more than 10,000 medically relevant compounds. Despite their ability to make critical secondary metabolites and genome sequences' availability, these two have not been linked with certainty. With this intent, our study aims at understanding the biosynthetic capacity in terms of secondary metabolite production in 528 Actinobacteria species from five different habitats, viz., soil, water, plants, animals, and humans. In our analysis of 9,646 clusters of 59 different classes, we have documented 64,000 SMs, of which more than 74% were of unique type, while 19% were partially conserved and 7% were conserved compounds. In the case of conserved compounds, we found the highest distribution in soil, 79.12%. We found alternate sources of antibiotics, such as viomycin, vancomycin, teicoplanin, fosfomycin, ficellomycin and patulin, and antitumour compounds, such as doxorubicin and tacrolimus in the soil. Also our study reported alternate sources for the toxin cyanobactin in water and plant isolates. We further analysed the clusters to determine their regulatory pathways and reported the prominent presence of the two component system of TetR/AcrR family, as well as other partial domains like CitB superfamily and HTH superfamily, and discussed their role in secondary metabolite production. This information will be helpful in exploring Actinobacteria from other environments and in discovering new chemical moieties of clinical significance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data and materials used in this study are available in the public domain.

References

  • Adamski M et al (2020) Cyanotoxin cylindrospermopsin producers and the catalytic decomposition process: a review. Harmful Algae 98:101894

    CAS  PubMed  Google Scholar 

  • Al-Musallam, A.A., et al., Amycolatopsis keratiniphila sp. nov., a novel keratinolytic soil actinomycete from Kuwait. Int J Syst Evol Microbiol, 2003. 53(Pt 3): p. 871–874.

  • Al-Shaibani, M.M., et al., Biodiversity of Secondary Metabolites Compounds Isolated from Phylum Actinobacteria and Its Therapeutic Applications. Molecules, 2021. 26(15).

  • Aminov RI (2010) A brief history of the antibiotic era: lessons learned and challenges for the future. Front Microbiol 1:134

    PubMed  PubMed Central  Google Scholar 

  • Arnison PG et al (2013) Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat Prod Rep 30(1):108–160

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aubel-Sadron G, Londos-Gagliardi D (1984) Daunorubicin and doxorubicin, anthracycline antibiotics, a physicochemical and biological review. Biochimie 66(5):333–352

    CAS  PubMed  Google Scholar 

  • Ayala-Ruano S et al (2019) A putative antimicrobial peptide from Hymenoptera in the megaplasmid pSCL4 of Streptomyces clavuligerus ATCC 27064 reveals a singular case of horizontal gene transfer with potential applications. Ecol Evol 9(5):2602–2614

    PubMed  PubMed Central  Google Scholar 

  • Bakker PA et al (2013) The rhizosphere revisited: root microbiomics. Front Plant Sci 4:165

    PubMed  PubMed Central  Google Scholar 

  • Battista N, Bari M, Bisogno T N-Acyl Amino Acids: Metabolism, Molecular Targets, and Role in Biological Processes. Biomolecules, 2019. 9(12).

  • Bebell LM, Muiru AN (2014) Antibiotic use and emerging resistance: how can resource-limited countries turn the tide? Glob Heart 9(3):347–358

    PubMed  Google Scholar 

  • Belknap, K.C., et al., Genome mining of biosynthetic and chemotherapeutic gene clusters in Streptomyces bacteria. Scientific Reports, 2020. 10(1).

  • Beveridge RE, Batey RA (2014) An organotrifluoroborate-based convergent total synthesis of the potent cancer cell growth inhibitory depsipeptides kitastatin and respirantin. Org Lett 16(9):2322–2325

    CAS  PubMed  Google Scholar 

  • Binda C et al (2018) Actinobacteria: a relevant minority for the maintenance of gut homeostasis. Dig Liver Dis 50(5):421–428

    PubMed  Google Scholar 

  • Blin K, et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res, 2021. 49(W1): p. W29-W35.

  • Bloudoff, K. and T.M. Schmeing, Structural and functional aspects of the nonribosomal peptide synthetase condensation domain superfamily: discovery, dissection and diversity. Biochim Biophys Acta Proteins Proteom, 2017. 1865(11 Pt B): p. 1587–1604.

  • Brigham, R.B. and R.C. Pittenger, Streptomyces orientalis, n. sp., the source of vancomycin. Antibiot Chemother (Northfield), 1956. 6(11): p. 642–7.

  • Brown MJ et al (2002) The antimicrobial natural product chuangxinmycin and some synthetic analogues are potent and selective inhibitors of bacterial tryptophanyl tRNA synthetase. Bioorg Med Chem Lett 12(21):3171–3174

    CAS  PubMed  Google Scholar 

  • Brünker P et al (1999) Isolation and characterization of the naphthocyclinone gene cluster from Streptomyces arenae DSM 40737 and heterologous expression of the polyketide synthase genes. Gene 227(2):125–135

    PubMed  Google Scholar 

  • Bühlmann S, Reymond JL (2020) ChEMBL-likeness score and database GDBChEMBL. Front Chem 8:46

    PubMed  PubMed Central  Google Scholar 

  • Chaiharn M, Theantana T, Pathom-Aree W Evaluation of Biocontrol Activities of Streptomyces spp. against Rice Blast Disease Fungi. Pathogens, 2020. 9(2).

  • Chase AB, et al. Vertical Inheritance Facilitates Interspecies Diversification in Biosynthetic Gene Clusters and Specialized Metabolites. mBio, 2021. 12(6): e0270021.

  • Chen J, Xie J (2011) Role and regulation of bacterial LuxR-like regulators. J Cell Biochem 112(10):2694–2702

    CAS  PubMed  Google Scholar 

  • Cheng C et al (2021) Mathermycin, an anti-cancer molecule that targets cell surface phospholipids. Toxicol Appl Pharmacol 413:115410

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chou WKW et al (2010) Genome mining in streptomyces avermitilis: cloning and characterization of SAV_76, the synthase for a new sesquiterpene, avermitilol. J Am Chem Soc 132(26):8850–8851

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chu BC et al (2010) Siderophore uptake in bacteria and the battle for iron with the host; a bird’s eye view. Biometals 23(4):601–611

    CAS  PubMed  Google Scholar 

  • Crowe CC, Sanders E (1973) Sisomicin: evaluation in vitro and comparison with gentamicin and tobramycin. Antimicrob Agents Chemother 3(1):24–28

    CAS  PubMed  PubMed Central  Google Scholar 

  • Daddaoua A et al (2017) Identification of GntR as regulator of the glucose metabolism in Pseudomonas aeruginosa. Environ Microbiol 19(9):3721–3733

    CAS  PubMed  Google Scholar 

  • Deng W, Li C, Xie J (2013) The underling mechanism of bacterial TetR/AcrR family transcriptional repressors. Cell Signal 25(7):1608–1613

    CAS  PubMed  Google Scholar 

  • Deng MR, et al. Discovery of Mycothiogranaticins from Streptomyces vietnamensis GIMV4.0001 and the Regulatory Effect of Mycothiol on the Granaticin Biosynthesis. Front Chem, 2021. 9: p. 802279.

  • Dertz EA et al (2006) Bacillibactin-mediated iron transport in Bacillus subtilis. J Am Chem Soc 128(1):22–23

    CAS  PubMed  Google Scholar 

  • Donald PR, McIlleron H (2009) Chapter 59 - Antituberculosis drugs. In: Schaaf HS et al (eds) Tuberculosis. W.B. Saunders, Edinburgh, pp 608–617

    Google Scholar 

  • Dose B et al (2018) Unexpected Bacterial Origin of the Antibiotic Icosalide: Two-Tailed Depsipeptide Assembly in Multifarious Burkholderia Symbionts. ACS Chem Biol 13(9):2414–2420

    CAS  PubMed  Google Scholar 

  • Eberhard A et al (1981) Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry 20(9):2444–2449

    CAS  PubMed  Google Scholar 

  • Fastner J et al (2003) Cylindrospermopsin occurrence in two German lakes and preliminary assessment of toxicity and toxin production of Cylindrospermopsis raciborskii (Cyanobacteria) isolates. Toxicon 42(3):313–321

    CAS  PubMed  Google Scholar 

  • Faust B et al (2000) Two new tailoring enzymes, a glycosyltransferase and an oxygenase, involved in biosynthesis of the angucycline antibiotic urdamycin A in Streptomyces fradiae Tü2717. Microbiology (reading) 146(Pt 1):147–154

    CAS  PubMed  Google Scholar 

  • Gänzle MG (2004) Reutericyclin: biological activity, mode of action, and potential applications. Appl Microbiol Biotechnol 64(3):326–332

    PubMed  Google Scholar 

  • Gao CH, Yang M, He ZG (2012) Characterization of a novel ArsR-like regulator encoded by Rv2034 in Mycobacterium tuberculosis. PLoS ONE 7(4):e36255

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giordano D et al (2015) Marine microbial secondary metabolites: pathways, evolution and physiological roles. Adv Microb Physiol 66:357–428

    CAS  PubMed  Google Scholar 

  • Grieneisen L et al (2021) Gut microbiome heritability is nearly universal but environmentally contingent. Science 373(6551):181–186

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hacquard S et al (2017) Interplay Between Innate Immunity and the Plant Microbiota. Annu Rev Phytopathol 55:565–589

    CAS  PubMed  Google Scholar 

  • Hasim S, et al. Elucidating duramycin’s bacterial selectivity and mode of action on the bacterial cell envelope. Front Microbiol 2018. 9.

  • He X et al (2018) Ficellomycin: an aziridine alkaloid antibiotic with potential therapeutic capacity. Appl Microbiol Biotechnol 102(10):4345–4354

    CAS  PubMed  Google Scholar 

  • Heilbronner S et al (2021) The microbiome-shaping roles of bacteriocins. Nat Rev Microbiol 19(11):726–739

    CAS  PubMed  Google Scholar 

  • Hines J et al (2008) Proteasome inhibition by fellutamide B induces nerve growth factor synthesis. Chem Biol 15(5):501–512

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jenner M et al (2019) An unusual Burkholderia gladioli double chain-initiating nonribosomal peptide synthetase assembles “fungal” icosalide antibiotics. Chem Sci 10(21):5489–5494

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S et al (2020) Total syntheses of fimsbactin A and B and their stereoisomers to probe the stereoselectivity of the fimsbactin uptake machinery in Acinetobacter baumannii. Org Lett 22(7):2806–2810

    CAS  PubMed  Google Scholar 

  • Kim S et al (2021) PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res 49(D1):D1388–D1395

    CAS  PubMed  Google Scholar 

  • Kotecka, K., et al., The MarR-Type Regulator PA3458 Is Involved in Osmoadaptation Control in Pseudomonas aeruginosa. Int J Mol Sci, 2021. 22(8).

  • Landwehr W, Wolf C, Wink J (2016) Actinobacteria and myxobacteria-two of the most important bacterial resources for novel antibiotics. Curr Top Microbiol Immunol 398:273–302

    CAS  PubMed  Google Scholar 

  • Lee CM et al (2017) The LacI-family transcription factor, RbsR, is a pleiotropic regulator of motility, virulence, siderophore and antibiotic production, gas vesicle morphogenesis and flotation in Serratia. Front Microbiol 8:1678

    PubMed  PubMed Central  Google Scholar 

  • Lee, W.W., et al., Potential anticancer agents.1 xl. synthesis of the β-anomer of 9-(d-arabinofuranosyl)-adenine. J Am Chem Soc 1960. 82(10): 2648–2649.

  • Li YQ et al (2007) Griseusin D, a new pyranonaphthoquinone derivative from a alkaphilic Nocardiopsis sp. J Antibiot (tokyo) 60(12):757–761

    CAS  PubMed  Google Scholar 

  • Li W et al (2021) RefSeq: expanding the prokaryotic genome annotation pipeline reach with protein family model curation. Nucleic Acids Res 49(D1):D1020–D1028

    CAS  PubMed  Google Scholar 

  • Liu J et al (2016) Antimycin-type depsipeptides: discovery, biosynthesis, chemical synthesis, and bioactivities. Nat Prod Rep 33(10):1146–1165

    CAS  PubMed  Google Scholar 

  • Losada AA, et al. Caboxamycin biosynthesis pathway and identification of novel benzoxazoles produced by cross-talk in Streptomyces sp. NTK 937. Microb Biotechnol, 2017. 10(4): 873–885.

  • Louis P, Galinski EA (1997) Characterization of genes for the biosynthesis of the compatible solute ectoine from Marinococcus halophilus and osmoregulated expression in Escherichia coli. Microbiology 143(4):1141–1149

    CAS  PubMed  Google Scholar 

  • Ludwig W et al (2012) Road map of the phylum Actinobacteria. Bergey’s manual® of systematic bacteriology. Springer, pp 1–28

  • Maddocks SE, Oyston PCF (2008) Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins. Microbiology (reading) 154(Pt 12):3609–3623

    CAS  PubMed  Google Scholar 

  • Martin MF, Liras P (1989) Organization and expression of genes involved in the biosynthesis of antibiotics and other secondary metabolites. Annu Rev Microbiol 43:173–206

    CAS  PubMed  Google Scholar 

  • McRose DL, Seyedsayamdost MR, Morel FMM (2018) Multiple siderophores: bug or feature? J Biol Inorg Chem 23(7):983–993

    CAS  PubMed  Google Scholar 

  • Medema MH et al (2015) Minimum Information about a Biosynthetic Gene cluster. Nat Chem Biol 11(9):625–631

    CAS  PubMed  PubMed Central  Google Scholar 

  • Méndez C et al (2002) Oviedomycin, an unusual angucyclinone encoded by genes of the oleandomycin-producer Streptomyces antibioticus ATCC11891. J Nat Prod 65(5):779–782

    PubMed  Google Scholar 

  • Miller R, Goodman C (2020) Quality of tuberculosis care by pharmacies in low- and middle-income countries: gaps and opportunities. J Clin Tuberc Other Mycobact Dis 18:100135

    PubMed  Google Scholar 

  • Nishida M et al (1977) Nocardicin A, a new monocyclic beta-lactam antibiotic III. In Vitro Evaluation J Antibiot (tokyo) 30(11):917–925

    CAS  PubMed  Google Scholar 

  • Nouioui I, et al. Genome-based taxonomic classification of the phylum actinobacteria. Frontiers in Microbiology, 2018. 9.

  • Novakova R et al (2011) The role of two SARP family transcriptional regulators in regulation of the auricin gene cluster in Streptomyces aureofaciens CCM 3239. Microbiology (reading) 157(Pt 6):1629–1639

    CAS  PubMed  Google Scholar 

  • Nowotka MM et al (2017) Using ChEMBL web services for building applications and data processing workflows relevant to drug discovery. Expert Opin Drug Discov 12(8):757–767

    PubMed  PubMed Central  Google Scholar 

  • Park S-H et al (2019) Metabolic Engineering of Saccharomyces cerevisiae for Production of Shinorine, a Sunscreen Material, from Xylose. ACS Synth Biol 8(2):346–357

    CAS  PubMed  Google Scholar 

  • Patin NV et al (2016) Competitive strategies differentiate closely related species of marine actinobacteria. ISME J 10(2):478–490

    CAS  PubMed  Google Scholar 

  • Pishchany G et al (2018) Amycomicin is a potent and specific antibiotic discovered with a targeted interaction screen. Proc Natl Acad Sci USA 115(40):10124–10129

    CAS  PubMed  PubMed Central  Google Scholar 

  • Promnuan Y, et al. Apis andreniformis associated Actinomycetes show antimicrobial activity against black rot pathogen (Xanthomonas campestris pv. campestris). PeerJ, 2021. 9: p. e12097.

  • Raynaud X, Nunan N (2014) Spatial ecology of bacteria at the microscale in soil. PLoS ONE 9(1):e87217

    PubMed  PubMed Central  Google Scholar 

  • Reimer LC et al (2019) BacDive in 2019: bacterial phenotypic data for High-throughput biodiversity analysis. Nucleic Acids Res 47(D1):D631-d636

    CAS  PubMed  Google Scholar 

  • Rivankar S (2014) An overview of doxorubicin formulations in cancer therapy. J Cancer Res Ther 10(4):853–858

    PubMed  Google Scholar 

  • Said, N., et al., Steps toward translocation-independent RNA polymerase inactivation by terminator ATPase ρ. Science, 2021. 371(6524).

  • Schramm, G., et al., Antibiotika aus Basidiomyceten, III. Strobilurin A und B, antifungische Stoffwechselprodukte aus Strobilurus tenacellus. Chemische Berichte, 1978. 111(8): p. 2779–2784.

  • Schutte-Nutgen K et al (2018) Tacrolimus—pharmacokinetic considerations for clinicians. Curr Drug Metab 19(4):342–350

    CAS  PubMed  Google Scholar 

  • Selim MSM, Abdelhamid SA, Mohamed SS (2021) Secondary metabolites and biodiversity of actinomycetes. J Genet Eng Biotechnol 19(1):72

    PubMed  PubMed Central  Google Scholar 

  • Seyedsayamdost MR et al (2011) The Jekyll-and-Hyde chemistry of Phaeobacter gallaeciensis. Nat Chem 3(4):331–335

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shafiq, N., et al., Shortage of essential antimicrobials: a major challenge to global health security. BMJ Glob Health, 2021. 6(11).

  • Silva GdC, et al. The Potential Use of Actinomycetes as Microbial Inoculants and Biopesticides in Agriculture. Frontiers in Soil Science, 2022. 2.

  • Smith N, Wilson MA (2017) Structural Biology of the DJ-1 Superfamily. Adv Exp Med Biol 1037:5–24

    CAS  PubMed  Google Scholar 

  • Sugiura Y et al (1989) Nucleotide-specific cleavage and minor-groove interaction of DNA with esperamicin antitumor antibiotics. Proc Natl Acad Sci 86(20):7672–7676

    CAS  PubMed  PubMed Central  Google Scholar 

  • Swartz TE et al (2007) Blue-light-activated histidine kinases: two-component sensors in bacteria. Science 317(5841):1090–1093

    CAS  PubMed  Google Scholar 

  • Thi Quynh Nhi, L., et al., Quantifying antimicrobial access and usage for paediatric diarrhoeal disease in an urban community setting in Asia. J Antimicrob Chemother, 2018. 73(9): p. 2546–2554.

  • Tyc O et al (2017) The Ecological role of volatile and soluble secondary metabolites produced by soil bacteria. Trends Microbiol 25(4):280–292

    CAS  PubMed  Google Scholar 

  • Valero-Jiménez CA et al (2020) Dynamics in secondary metabolite gene clusters in otherwise highly syntenic and stable genomes in the fungal genus botrytis. Genome Biol Evol 12(12):2491–2507

    PubMed  PubMed Central  Google Scholar 

  • van Aalten DM et al (2000) Crystal structure of FadR, a fatty acid-responsive transcription factor with a novel acyl coenzyme A-binding fold. Embo j 19(19):5167–5177

    PubMed  PubMed Central  Google Scholar 

  • Van Goethem MW et al (2021) Long-read metagenomics of soil communities reveals phylum-specific secondary metabolite dynamics. Commun Biol 4(1):1302

    PubMed  PubMed Central  Google Scholar 

  • Vecchione JJ, Sello JK (2008) Characterization of an inducible, antibiotic-resistant aminoacyl-tRNA synthetase gene in Streptomyces coelicolor. J Bacteriol 190(18):6253–6257

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ventura M et al (2007) Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev 71(3):495–548

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vining, L.C., Roles of secondary metabolites from microbes. Ciba Found Symp, 1992. 171: p. 184–94; discussion 195–8.

  • Wang H et al (2014) Atlas of nonribosomal peptide and polyketide biosynthetic pathways reveals common occurrence of nonmodular enzymes. Proc Natl Acad Sci USA 111(25):9259–9264

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, R.J., et al., Three New Isoflavonoid Glycosides from the Mangrove-Derived Actinomycete Micromonospora aurantiaca 110B. Mar Drugs, 2019. 17(5).

  • Weinstein MJ et al (1963) Gentamicin, a new broad-spectrum antibiotic complex. Antimicrob Agents Chemother (bethesda) 161:1–7

    CAS  PubMed  Google Scholar 

  • Wescombe PA, Tagg JR (2003) Purification and characterization of streptin, a type A1 lantibiotic produced by Streptococcus pyogenes. Appl Environ Microbiol 69(5):2737–2747

    PubMed  PubMed Central  Google Scholar 

  • Williams DH et al (1989) Why are secondary metabolites (natural products) biosynthesized? J Nat Prod 52(6):1189–1208

    CAS  PubMed  Google Scholar 

  • Woodyer RD et al (2006) Heterologous production of fosfomycin and identification of the minimal biosynthetic gene cluster. Chem Biol 13(11):1171–1182

    CAS  PubMed  Google Scholar 

  • Wu C, van der Donk WA (2021) Engineering of new-to-nature ribosomally synthesized and post-translationally modified peptide natural products. Curr Opin Biotechnol 69:221–231

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada Y et al (2015) Terpene synthases are widely distributed in bacteria. Proc Natl Acad Sci USA 112(3):857–862

    CAS  PubMed  Google Scholar 

  • Yan Q et al. Secondary Metabolism and Interspecific Competition Affect Accumulation of Spontaneous Mutants in the GacS-GacA Regulatory System in <i>Pseudomonas protegens</i>. mBio, 2018. 9(1): p. e01845–17.

  • Zagar C, Scharf HD (1993) Synthesis of a terminal A-B-C disaccharide fragment of flambamycin, curamycin, and avilamycin. Carbohydr Res 248:107–118

    CAS  PubMed  Google Scholar 

  • Zhang H et al (2022) Spatial and temporal dynamics of actinobacteria in drinking water reservoirs: novel insights into abundance, community structure, and co-existence model. Sci Total Environ 814:152804

    CAS  PubMed  Google Scholar 

  • Zheng X et al (2021) Prevention and detoxification of patulin in apple and its products: a review. Food Res Int 140:110034

    CAS  PubMed  Google Scholar 

  • Zuo LJ et al (2016) Identification of 3-demethylchuangxinmycin from Actinoplanes tsinanensis CPCC 200056. Yao Xue Xue Bao 51(1):105–109

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Director, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, India, for his consistent encouragement and support.

Funding

A.B. and M.V.D. were supported by CSIR-NET Fellowship, while S.S. and T.S. were supported by DST-INSPIRE fellowships (IF-170007 and IF-160438). DST-SERB supports B.D. This work was funded by the Council of Scientific and Industrial Research (CSIR), New Delhi (OLP-2035), and the Department of Science and Technology-SERB (GPP-0329) to A.K.S.

Author information

Authors and Affiliations

Authors

Contributions

AB and AKS planned and prepared the design of the experiment. AB, SS, TS, MVD, and BD screened relevant literature and collected relevant data, while AB and SS performed bioinformatics analysis. AB performed the statistical analysis, while AB, SS, and AKS designed and prepared the figures. AB and AKS wrote the main manuscript. AKS supervised the work.

Corresponding author

Correspondence to Anil Kumar Singh.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Research involving human participants or animals

This article does not contain any studies with human participants or animals performed by any authors.

Additional information

Communicated by Christopher Franco.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 1354 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharjee, A., Sarma, S., Sen, T. et al. Genome mining to identify valuable secondary metabolites and their regulation in Actinobacteria from different niches. Arch Microbiol 205, 127 (2023). https://doi.org/10.1007/s00203-023-03482-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00203-023-03482-3

Keywords

Navigation