Skip to main content
Log in

Leuconostoc mesenteroides utilizes glucose fermentation to produce electricity and ameliorates high-fat diet-induced abdominal fat mass

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Bacteria capable of producing electricity in intestinal microbiota have been discovered. However, no studies have explored butyric acid which generated by electrogenic bacteria on the host organism have significant physiological impacts on certain organs. We found that the capacity for electrical current generation by the commensal gut Leuconostoc mesenteroides EH-1 (L. mesenteroides EH-1) during glucose fermentation. The electricity production was essential for the gut colonization of L. mesenteroides EH-1 since the inhibition of electricity production by cyclophilin A inhibitor (TMN355) significantly diminished the number of bacteria attached to the human gut epithelial cell surface. The adipocyte differentiation contributes to the increased 4-hydroxy-2-nonenal (4-HNE), considered as a biomarker of reactive oxygen species (ROS). The effect of intestinal electrogenic microbiota in the high-fat diet (HFD)-induced 4-HNE and abdominal fat accumulation in mice was investigated in this study. The oral administration of glucose with a butyric acid-producing L. mesenteroides EH-1 bacterium attenuated the expression of 4-HNE and abdominal fat. The level of 4-HNE and abdominal fat depot were markedly increased in mice administered with cyclophilin A inhibitor-pretreated bacteria or GLPG-0974, an antagonist of free fatty acid receptor 2 (Ffar2). Our studies suggest a novel means by which the probiotic bacteria can modulate fat mass deposition and oxidative stress via the cyclophilin A-mediated electron production and the butyric acid-activated Ffar2 pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article [and its supplementary information files].

References

  • Abubakr MA, Hassan Z, Salem G (2013) Antioxidant activity of milk fermented with Lactobacillus plantarum and Leuconostoc mesenteroides isolated from non-dairy sources. Asian J Pharm Res Dev 1:71–83

    Google Scholar 

  • Adachi T, Toishi T, Wu H, Kamiya T, Hara H (2009) Expression of extracellular superoxide dismutase during adipose differentiation in 3T3-L1 cells. Redox Rep 14:34–40

    Article  CAS  PubMed  Google Scholar 

  • Akbar S, Bellary S, Griffiths HR (2011) Dietary antioxidant interventions in type 2 diabetes patients: a meta-analysis. Br J Diabetes Vasc Dis 11:62–68

    Article  CAS  Google Scholar 

  • Almeida-Suhett CP, Scott JM, Graham A, Chen Y, Deuster PA (2019) Control diet in a high-fat diet study in mice: Regular chow and purified low-fat diet have similar effects on phenotypic, metabolic, and behavioral outcomes. Nutr Neurosci 22:19–28

    Article  CAS  PubMed  Google Scholar 

  • Balcázar JL et al (2007) Changes in intestinal microbiota and humoral immune response following probiotic administration in brown trout (Salmo trutta). Br J Nutr 97:522–527

    Article  PubMed  Google Scholar 

  • Barella LF, Jain S, Kimura T, Pydi SP (2021) Metabolic roles of G protein-coupled receptor signaling in obesity and type 2 diabetes. FEBS J 288:2622–2644

    Article  CAS  PubMed  Google Scholar 

  • Barzegar A (2012) The role of electron-transfer and H-atom donation on the superb antioxidant activity and free radical reaction of curcumin. Food Chem 135:1369–1376

    Article  CAS  PubMed  Google Scholar 

  • Bjelakovic G, Nikolova D, Gluud C (2013) Antioxidant supplements to prevent mortality. JAMA 310:1178–1179

    Article  CAS  PubMed  Google Scholar 

  • Brown AJ et al (2003) The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 278:11312–11319

    Article  CAS  PubMed  Google Scholar 

  • Cani PD, Delzenne NM (2009) Interplay between obesity and associated metabolic disorders: new insights into the gut microbiota. Curr Opin Pharm 9:737–743

    Article  CAS  Google Scholar 

  • Cani PD et al (2007) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56:1761–1772

    Article  CAS  PubMed  Google Scholar 

  • Castro JP, Grune T, Speckmann B (2016) The two faces of reactive oxygen species (ROS) in adipocyte function and dysfunction. Biol Chem 397:709–724

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay M, Khemka VK, Chatterjee G, Ganguly A, Mukhopadhyay S, Chakrabarti S (2015) Enhanced ROS production and oxidative damage in subcutaneous white adipose tissue mitochondria in obese and type 2 diabetes subjects. Mol Cell Biochem 399:95–103

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Shen Y, An D, Voordouw G (2017) Use of acetate, propionate, and butyrate for reduction of nitrate and sulfate and methanogenesis in microcosms and bioreactors simulating an oil reservoir. Appl Environ Microbiol 83:e02983–e02916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C-Y, Tsai T-H, Wu P-S, Tsao S-E, Huang Y-S, Chung Y-C (2018) Selection of electrogenic bacteria for microbial fuel cell in removing Victoria blue R from wastewater. J Environ Sci Health 53:108–115

    Article  CAS  Google Scholar 

  • Coppola S, Avagliano C, Calignano A, Berni Canani R (2021) The protective role of butyrate against obesity and obesity-related diseases. Molecules 26:682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Czernichow S et al (2009) Effects of long-term antioxidant supplementation and association of serum antioxidant concentrations with risk of metabolic syndrome in adults. Am J Clin Nutr 90:329–335

    Article  CAS  PubMed  Google Scholar 

  • d’Uscio LV, Milstien S, Richardson D, Smith L, Katusic ZS (2003) Long-term vitamin C treatment increases vascular tetrahydrobiopterin levels and nitric oxide synthase activity. Circul Res 92:88–95

    Article  Google Scholar 

  • Darzi J, Frost GS, Robertson MD (2011) Do SCFA have a role in appetite regulation? Proc Nutr Soc 70:119–128

    Article  CAS  PubMed  Google Scholar 

  • Dewulf EM et al (2011) Inulin-type fructans with prebiotic properties counteract GPR43 overexpression and PPARγ-related adipogenesis in the white adipose tissue of high-fat diet-fed mice. J Nutr Biochem 22:712–722

    Article  CAS  PubMed  Google Scholar 

  • Di Domenico EG, Petroni G, Mancini D, Geri A, Palma LD, Ascenzioni F (2015) Development of electroactive and anaerobic ammonium-oxidizing (Anammox) biofilms from digestate in microbial fuel cells. BioMed Res Intern 2015

  • Duncan SH, Belenguer A, Holtrop G, Johnstone AM, Flint HJ, Lobley GE (2007) Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Appl Environ Microbiol 73:1073–1078

    Article  CAS  PubMed  Google Scholar 

  • Ericsson AC, Davis DJ, Franklin CL, Hagan CE (2015) Exoelectrogenic capacity of host microbiota predicts lymphocyte recruitment to the gut. Physiol Genomics 47:243–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finke N, Vandieken V, Jørgensen BB (2007) Acetate, lactate, propionate, and isobutyrate as electron donors for iron and sulfate reduction in Arctic marine sediments, Svalbard. FEMS Microbiol Ecol 59:10–22

    Article  CAS  PubMed  Google Scholar 

  • Fleury Y et al (1996) Covalent structure, synthesis, and structure-function studies of mesentericin Y 10537, a defensive peptide from Gram-positive bacteria Leuconostoc mesenteroides. J Biol Chem 271:14421–14429

    Article  CAS  PubMed  Google Scholar 

  • Furukawa S et al (2017) Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 114:1752–1761

    Article  Google Scholar 

  • Hajer GR, van Haeften TW, Visseren FLJ (2008) Adipose tissue dysfunction in obesity, diabetes, and vascular diseases. Eur Heart J 29:2959–2971. https://doi.org/10.1093/eurheartj/ehn387

    Article  CAS  PubMed  Google Scholar 

  • Hall JE, Hall ME (2020) Guyton and Hall textbook of medical physiology e-Book. Elsevier, Philadelphia

    Google Scholar 

  • He J et al (2020) Short-chain fatty acids and their association with signalling pathways in inflammation, glucose and lipid metabolism. Int J Mol Sci 21:6356

    Article  CAS  PubMed Central  Google Scholar 

  • Houstis N, Rosen ED, Lander ES (2006) Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 440:944–948

    Article  CAS  PubMed  Google Scholar 

  • Huang A, Vita JA, Venema RC, Keaney JF (2000) Ascorbic acid enhances endothelial nitric-oxide synthase activity by increasing intracellular tetrahydrobiopterin. J Biol Chem 275:17399–17406

    Article  CAS  PubMed  Google Scholar 

  • Jakobsdottir G, Xu J, Molin G, Ahrne S, Nyman M (2013) High-fat diet reduces the formation of butyrate, but increases succinate, inflammation, liver fat and cholesterol in rats, while dietary fibre counteracts these effects. PLoS ONE 8:e80476

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeffery IB, Lynch DB, O’toole PW (2016) Composition and temporal stability of the gut microbiota in older persons. ISME J 10:170–182

    Article  CAS  PubMed  Google Scholar 

  • Jiao W et al (2020) Butyric acid normalizes hyperglycemia caused by the tacrolimus-induced gut microbiota. Am J Transplantation 20:2413–2424

    Article  CAS  Google Scholar 

  • Jocken JW et al (2018) Short-chain fatty acids differentially affect intracellular lipolysis in a human white adipocyte model. Front Endocrinol (lausanne) 8:372

    Article  Google Scholar 

  • Jung JY, Lee SH, Lee HJ, Seo H-Y, Park W-S, Jeon CO (2012) Effects of Leuconostoc mesenteroides starter cultures on microbial communities and metabolites during kimchi fermentation. Int J Food Microbiol 153:378–387

    Article  CAS  PubMed  Google Scholar 

  • Kashmiri Z, Mankar S (2014) Free radicals and oxidative stress in bacteria. Int J Curr Microbiol App Sci 3:34–40

    Google Scholar 

  • Khan S, Jena G (2014) Protective role of sodium butyrate, a HDAC inhibitor on beta-cell proliferation, function and glucose homeostasis through modulation of p38/ERK MAPK and apoptotic pathways: study in juvenile diabetic rat. Chem-Biol Interact 213:1–12

    Article  CAS  PubMed  Google Scholar 

  • Kim G et al (2022) Prebiotic activities of dextran from Leuconostoc mesenteroides SPCL742 analyzed in the aspect of the human gut microbial ecosystem. Food Funct 13:1256–1267

    Article  CAS  PubMed  Google Scholar 

  • Kimura I et al (2013) The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun 4:1–12

    Article  Google Scholar 

  • Kuda T et al (2014) In vitro evaluation of the fermentative, antioxidant, and anti-inflammation properties of Lactococcus lactis subsp. lactis BF3 and Leuconostoc mesenteroides subsp. mesenteroides BF7 isolated from Oncorhynchus keta intestines in Rausu. Japan J Funct Foods 11:269–277

    Article  CAS  Google Scholar 

  • Kumar AP, Chougala M, Nandini C, Salimath P (2010) Effect of butyric acid supplementation on serum and renal antioxidant enzyme activities in streptozotocin-induced diabetic rats. J Food Biochem 34:15–30

    Article  Google Scholar 

  • Lee SP et al (2001) Cyclophilin a binds to peroxiredoxins and activates its peroxidase activity. J Biol Chem 276:29826–29832

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Ozcelik B, Min D (2003) Electron donation mechanisms of β-carotene as a free radical scavenger. J Food Sci 68:861–865

    Article  CAS  Google Scholar 

  • Lee OH, Seo MJ, Choi HS, Lee BY (2012) Pycnogenol inhibits lipid accumulation in 3T3-L1 adipocytes with the modulation of reactive oxygen species (ROS) production associated with antioxidant enzyme responses. Phytother Res 26:403–411

    Article  CAS  PubMed  Google Scholar 

  • Lee Y-J et al (2014) Anti-adipogenic and anti-oxidant activities of mugwort and pine needles fermented using Leuconostoc mesenteroides 1076. Food Biotechnol 28:79–95

    Article  CAS  Google Scholar 

  • Lin HV et al (2012) Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS ONE 7:e35240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S et al (2015) Starch and starch hydrolysates are favorable carbon sources for Bifidobacteria in the human gut. BMC Microbiol 15:1–9

    Article  Google Scholar 

  • Long EK, Olson DM, Bernlohr DA (2013) High-fat diet induces changes in adipose tissue trans-4-oxo-2-nonenal and trans-4-hydroxy-2-nonenal levels in a depot-specific manner. Free Radical Biol Med 63:390–398

    Article  CAS  Google Scholar 

  • Lu Y, Fan C, Li P, Lu Y, Chang X, Qi K (2016) Short chain fatty acids prevent high-fat-diet-induced obesity in mice by regulating G protein-coupled receptors and gut microbiota. Sci Rep 6:1–13

    Article  Google Scholar 

  • Marazza JA, Nazareno MA, de Giori GS, Garro MS (2012) Enhancement of the antioxidant capacity of soymilk by fermentation with Lactobacillus rhamnosus. J Funct Foods 4:594–601

    Article  CAS  Google Scholar 

  • Matheus V, Monteiro L, Oliveira R, Maschio D, Collares-Buzato C (2017) Butyrate reduces high-fat diet-induced metabolic alterations, hepatic steatosis and pancreatic beta cell and intestinal barrier dysfunctions in prediabetic mice. Exp Biol Med 242:1214–1226

    Article  CAS  Google Scholar 

  • McNabney SM, Henagan TM (2017) Short chain fatty acids in the colon and peripheral tissues: a focus on butyrate, colon cancer, obesity and insulin resistance. Nutrients 9:1348

    Article  PubMed Central  Google Scholar 

  • Mekkes M, Weenen T, Brummer RJ, Claassen E (2014) The development of probiotic treatment in obesity: a review. Beneficial Microbes 5:19–28

    Article  CAS  PubMed  Google Scholar 

  • Nelson D, Cox M, Lehninger A (2008) Principles of biochemistry, 5th edn. Freeman New York, New York

    Google Scholar 

  • Oschman JL (2007) Can electrons act as antioxidants? A review and commentary. J Alternat Complement Med 13:955–967

    Article  Google Scholar 

  • Pace BS, White GL, Dover GJ, Boosalis MS, Faller DV, Perrine SP (2002) Short-chain fatty acid derivatives induce fetal globin expression and erythropoiesis in vivo. Blood J Am Soc Hematol 100:4640–4648

    CAS  Google Scholar 

  • Pham MT et al (2020) Leuconostoc mesenteroides mediates an electrogenic pathway to attenuate the accumulation of abdominal fat mass induced by high fat diet. Sci Rep 10:21916. https://doi.org/10.1038/s41598-020-78835-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reiter RJ (1996) The indoleamine melatonin as a free radical scavenger, electron donor, and antioxidant. In: Filippini GA, Costa CVL, Bertazzo A (eds) Recent Advances in Tryptophan Research. Springer, Boston, MA, pp 307–313

    Chapter  Google Scholar 

  • Rosenspire AJ, Kindzelskii AL, Simon BJ, Petty HR (2005) Real-time control of neutrophil metabolism by very weak ultra-low frequency pulsed magnetic fields. Biophys J 88:3334–3347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi L et al (2016) Extracellular electron transfer mechanisms between microorganisms and minerals. Nat Rev Microbiol 14:651

    Article  CAS  PubMed  Google Scholar 

  • Shiro K, Tadao O (2017) Genome sequence of Leuconostoc mesenteroides LK-151 isolated from a Japanese sake cellar as a high producer of d-amino acids. Genome Announc 5:e00661–e00617

    Google Scholar 

  • Sorokin DY, Detkova E, Muyzer G (2010) Propionate and butyrate dependent bacterial sulfate reduction at extremely haloalkaline conditions and description of Desulfobotulus alkaliphilus sp. nov. Extremophiles 14:71–77

    Article  CAS  PubMed  Google Scholar 

  • Szekér K, Németh E, Kun S, Beczner J, Gálfi P (2007) Adhesion of lactic acid bacteria to Caco-2 cells—Evaluation of different detection methods. Acta Aliment 36:365–371

    Article  Google Scholar 

  • Traisaeng S et al (2020) Leuconostoc mesenteroides fermentation produces butyric acid and mediates Ffar2 to regulate blood glucose and insulin in type 1 diabetic mice. Sci Rep 10:1–10

    Article  Google Scholar 

  • Trémillon N et al (2012) PpiA, a surface PPIase of the cyclophilin family in Lactococcus lactis. PLoS ONE 7:e33516

    Article  PubMed  PubMed Central  Google Scholar 

  • Uchida K (2003) 4-Hydroxy-2-nonenal: a product and mediator of oxidative stress. Prog Lipid Res 42:318–343

    Article  CAS  PubMed  Google Scholar 

  • Ulven T (2012) Short-chain free fatty acid receptors FFA2/GPR43 and FFA3/GPR41 as new potential therapeutic targets. Front Endocrinol (lausanne) 3:111

    Article  Google Scholar 

  • Valacchi G, Caccamo D, Pelle E, De Luca C (2013) Innovative Approaches in Environmental Medicine: Redox/Detoxification Biomarkers in Environmental Intolerances. In. Hindawi

  • Walker E, Wolfe BM (2020) Obesity Prevention. In: Nguyen NT, Brethauer SA, Morton JM, Ponce J, Rosenthal RJ (eds) The ASMBS Textbook of Bariatric Surgery. Springer International Publishing, Cham, pp 595–611

    Chapter  Google Scholar 

  • Wang W et al (2019) Bacterial extracellular electron transfer occurs in mammalian gut. Anal Chem 91:12138–12141

    Article  CAS  PubMed  Google Scholar 

  • Yadav H, Lee J-H, Lloyd J, Walter P, Rane SG (2013) Beneficial metabolic effects of a probiotic via butyrate-induced GLP-1 hormone secretion. J Biol Chem 288:25088–25097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang JJ, Pham MT, Rahim AR, Chuang T-H, Hsieh M-F, Huang C-M (2020a) Mouse Abdominal Fat Depots Reduced by Butyric Acid-Producing Leuconostoc mesenteroides. Microorganisms 8:1180

    Article  CAS  PubMed Central  Google Scholar 

  • Yang JJ, Rahim AR, Yang AJ, Chuang T-H, Huang C-M (2020b) Production of electricity and reduction of high-fat diet-induced IL-6 by glucose fermentation of Leuconostoc mesenteroides. Biochem Biophys Res Commun 533:651–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao Y, Cai X, Fei W, Ye Y, Zhao M, Zheng C (2022) The role of short-chain fatty acids in immunity, inflammation and metabolism. Crit Rev Food Sci Nutr 62:1–12

    Article  CAS  PubMed  Google Scholar 

  • Zhang W et al (2011) Sodium butyrate maintains growth performance by regulating the immune response in broiler chickens. Br Poult Sci 52:292–301

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Ton Duc Thang University

Funding

The authors received no specific grant from any funding agency.

Author information

Authors and Affiliations

Authors

Contributions

MTP was in charge of experiments, wrote, edited, and reviewed manuscript; TDT designed and interpreted study; EZ analyzed data. All authors approved the final version of the manuscript. MTP is the guarantor of this work.

Corresponding author

Correspondence to Minh Tan Pham.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by Erko Stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5794 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pham, M.T., Tran, T.D. & Zayabaatar, E. Leuconostoc mesenteroides utilizes glucose fermentation to produce electricity and ameliorates high-fat diet-induced abdominal fat mass. Arch Microbiol 204, 670 (2022). https://doi.org/10.1007/s00203-022-03281-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00203-022-03281-2

Keywords

Navigation