Skip to main content
Log in

Vibrio fluminensis sp. nov. isolated from the skin of Southern Atlantic sharpnose-pufferfish (Canthigaster figueiredoi)

  • Short Communication
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

This manuscript provides the description of the bacterial strain A621T characterized by Gram negative motile rods, presenting green circular colonies on TCBS. It was obtained from the skin of the sharpnose pufferfish Canthigaster figueredoi (Tetraodontidae Family), collected in Arraial do Cabo, located in the Rio de Janeiro region, Brazil. Optimum growth occurs at 20–28 °C in the presence of 3% NaCl. The Genome sequence of the novel isolate consisted of 4.224 Mb, 4431 coding genes and G + C content of 44.5%. Genomic taxonomy analysis based on average amino acid (AAI), genome-to-genome-distance (GGDH) and phylogenetic reconstruction placed (A621T= CBAS 741T = CAIM 1945T = CCMR 150T) into a new species of the genus Vibrio (Vibrio fluminensis sp. nov). The genome of the novel species contains four gene clusters (~ 56.17 Kbp in total) coding for different types of bioactive compounds that hint to several possible ecological roles in the sharpnose pufferfish host.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Agarwal S, Dey S, Ghosh B, Biswas M, Dasgupta J (2019) Mechanistic basis of vitamin B12 and cobinamide salvaging by the Vibrio species. Biochim Biophys Acta–protrein Proteom 1867(2):140–151

    Article  CAS  Google Scholar 

  • Amaral GRS, Dias GM, Wellington-Oguri M, Chimetto L, Campeão ME et al (2014) Genotype to phenotype: identification of diagnostic vibrio phenotypes using whole genome sequences. Int J Syst Evol Microbiol 64:357–365

    Article  CAS  PubMed  Google Scholar 

  • Appolinario LR, Tschoeke D, Rua CPJ, Venas T, Campeão ME et al (2016) Description of Endozoicomonas arenosclerae sp. nov. using a genomic taxonomy approach. Antonie Leeuwenhoek 109(3):431–438

    Article  PubMed  Google Scholar 

  • Arnison PG, Bibb MJ, Bierbaum G, Bowers AA, Bugni TS et al (2013) Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat Prod Rep 30(1):108–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azevedo GPR, Mattsson HK, Appolinario LR, Calegario G, Leomil L et al (2020) Enterovibrio baiacu sp. nov. Curr Microbiol 77(1):154–157

    Article  CAS  PubMed  Google Scholar 

  • Azevedo GPR, Mattsson HK, Lopes GR, Vidal L, Campeão M et al (2021) Vibrio tetraodonis sp. nov.: genomic insights on the secondary metabolites repertoire. Arch Microbiol 203(1):399–404

    Article  CAS  PubMed  Google Scholar 

  • Bass D, Stentiford GD, Wang HC, Koskella B, Tyler CR (2019) The pathobiome in animal and plant diseases. Trends Ecol Evol 34(11):996–1008

    Article  PubMed  PubMed Central  Google Scholar 

  • Bassler BL, Wright M, Silverman MR (1994) Multiple signaling systems controlling expression of luminescence in Vibrio harveyi: sequence and function of genes encoding a second sensory pathway. Mol Microbiol 13(2):273–286

    Article  CAS  PubMed  Google Scholar 

  • Bondarev V, Richter M, Romano S, Piel J, Schwedt A et al (2013) The genus Pseudovibrio contains metabolically versatile bacteria adapted for symbiosis. Environ Microbiol 15:2095–2113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Böttcher T, Sieber SA (2009) Structurally refined β-lactones as potent inhibitors of devastating bacterial virulence factors. ChemBioChem 10(4):663–666

    Article  PubMed  Google Scholar 

  • Case RJ, Labbate M, Kjelleberg S (2008) AHL-driven quorum-sensing circuits: their frequency and function among the proteobacteria. ISME J 2(4):345

    Article  CAS  PubMed  Google Scholar 

  • Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH (2019) GTDB-Tk: a toolkit to classify genomes with the genome taxonomy database. Bioinformatics 36(6):1925–1927. https://doi.org/10.1093/bioinformatics/btz848

    Article  CAS  PubMed Central  Google Scholar 

  • Coil D, Jospin G, Darling AE (2015) A5-miseq: an updated pipeline to assemble microbial genomes from Illumina MiSeq data. Bioinformatics 31:587–589

    Article  CAS  PubMed  Google Scholar 

  • Froese R, Pauly D (2021) FishBase. In: World wide web electronic publication. https://www.fishbase.org, version (06/2021). Accessed 21 June 2021

  • Grissa I, Vergnaud G, Pourcel C (2007) CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucl Acid Res 35(1):W52–W57. https://doi.org/10.1093/nar/gkm360

    Article  Google Scholar 

  • Hai NV (2015) The use of probiotics in aquaculture. J Appl Microbiol 119(4):917–935

    Article  CAS  PubMed  Google Scholar 

  • Ina-Salwany MY, Al-saari N, Mohamad A, Mursidi FA, Mohd-Aris A et al (2019) Vibriosis in fish: a review on disease development and prevention. J Aquat Anim Health 31(1):3–22

    Article  CAS  PubMed  Google Scholar 

  • Legrand TP, Catalano SR, Wos-Oxley ML, Stephens F, Landos M et al (2018) The inner workings of the outer surface: skin and gill microbiota as indicators of changing gut health in yellowtail kingfish. Front Microbiol 8:2664

    Article  PubMed  PubMed Central  Google Scholar 

  • Legrand TP, Wynne JW, Weyrich LS, Oxley AP (2019) A microbial sea of possibilities: current knowledge and prospects for an improved understanding of the fish microbiome. Rev Aquac 12(2):1101–1134

    Article  Google Scholar 

  • Llewellyn MS, LeadbeaterS GC, Sylvain FE, Custodio M et al (2017) Parasitism perturbs the mucosal microbiome of Atlantic Salmon. Sci Rep 7:43465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Machado H, Sonnenschein EC, Melchiorsen J, Gram L (2015) Genome mining reveals unlocked bioactive potential of marine gram-negative bacteria. BMC Genom 16:158

    Article  Google Scholar 

  • Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14:60–74

    Article  Google Scholar 

  • Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, Oxford

    Google Scholar 

  • Omeershffudin UNM, Kumar S (2019) In silico approach for mining of potential drug targets from hypothetical proteins of bacterial proteome. IJMBOA 4(4):145–152

    Article  Google Scholar 

  • Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al (2014) The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 42:206–214

    Article  Google Scholar 

  • Ramirez M, Domínguez-Borbor C, Salazar L, Debut A, Vizuete K et al (2022) The probiotics Vibrio diabolicus (Ili), Vibrio hepatarius (P62), and Bacillus cereus sensu stricto (P64) colonize internal and external surfaces of Penaeus vannamei shrimp larvae and protect it against Vibrio parahaemolyticus. Aquaculture 549:737826

    Article  CAS  Google Scholar 

  • Rodríguez-R LM, Konstantinidis KT (2016) Bypassing cultivation to identify bacterial species. Microb Mag 9(3):111–118

    Google Scholar 

  • Schmieder R, Edwards R (2011) Quality control and preprocessing of metagenomic datasets. Bioinformatics 27:863–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soto-Rodriguez SA, Lozano-Olvera R, Abad-Rosales SM, Martínez-Brown JM, Ibarra-Castro L (2019) Susceptibility of Pacific white snook Centropomus viridis to vibrio species. Dis Aquat Org 134(3):189–195

    Article  CAS  Google Scholar 

  • Thompson FL, Iida T, Swings J (2004) Biodiversity of vibrios Washington. Microbiol Mol Biol Rev 68:403–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson CC, Chimetto L, Edwards RA, Swings J, Stackebrandt E, Thompson FL (2013) Microbial genomic taxonomy. BMC Genom 14:913

    Article  Google Scholar 

  • Thompson CC, Amaral GR, Campeão M, Edwards RA, Polz MF et al (2015) Microbial taxonomy in the post-genomic era: rebuilding from scratch? Arch Microbiol 197(3):359–370

    Article  CAS  PubMed  Google Scholar 

  • Thompson F, Gomez-Gil B (2018) International committee on systematics of prokaryotes subcommittee on the taxonomy of Aeromonadaceae. Vibrionaceae and related organisms Minutes of the meeting Chicago. Int J Syst Evol Microbiol 68:2111–2112

    Article  PubMed  Google Scholar 

  • Thompson J, Gregore S, Plummer S, Shields RJ, Rowley AF (2010) An in vitro and in vivo assessment of the potential of Vibrio spp. as probiotics for the Pacific white shrimp Litopenaeus vannamei. J Appl Microbiol 109(4):1177–1187

    Article  CAS  PubMed  Google Scholar 

  • Tonon LAC et al (2020) New tetrodotoxin analogs in Brazilian pufferfishes tissues and microbiome. Chemosphere 242:125–211

    Article  Google Scholar 

  • De Vos P, Thompson F, Thompson C, Swings J (2017) A flavor of prokaryotic taxonomy: systematics revisited. Microbial resources: from functional existence in nature to applications. Elsevier, Amsterdam

    Google Scholar 

  • Walter JM, Tschoeke DA, Meirelles PM, de Oliveira L, Leomil L et al (2016) Taxonomic and functional metagenomic signature of turfs in the abrolhos reef system (Brazil). PLoS One 11(8):e0161168

    Article  PubMed  PubMed Central  Google Scholar 

  • Whitman WB, Sutcliffe IC, Rossello-Mora R (2019) Proposal for changes in the international code of nomenclature of prokaryotes: granting priority to candidatus names. Int J Syst Evol Microbiol 69(7):1–2

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank CNPQ, CAPES and FAPERJ for financial support.

Funding

This research was funded by conselho nacional de desenvolvimento científico e tecnológico (13951), coordenação de aperfeiçoamento de pessoal de nível superior (13952), fundação carlos chagas filho de amparo à pesquisa do estado do rio de janeiro (13953).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gustavo P. R. de Azevedo, Cristiane C. Thompson or Fabiano L. Thompson.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest concerning funding support by CNPq, CAPES, and FAPERJ.

Additional information

Communicated by Erko Stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 67 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Azevedo, G.P.R., Mattsson, H.K., Tonon, L.A.C. et al. Vibrio fluminensis sp. nov. isolated from the skin of Southern Atlantic sharpnose-pufferfish (Canthigaster figueiredoi). Arch Microbiol 204, 664 (2022). https://doi.org/10.1007/s00203-022-03266-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00203-022-03266-1

Keywords

Navigation