Skip to main content

Advertisement

Log in

Exploring plant growth-promoting rhizobacteria as stress alleviators: a methodological insight

  • Mini-Review
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Rhizospheric and root-endophyte bacteria can stimulate plant growth through diverse biochemical mechanisms and pathways, particularly under biotic and abiotic stresses. For this reason, biotechnological trends on plant growth-promoting rhizobacteria (PGPR) application as biofertilizers, bioremediators, and stress alleviators are gaining increasing interest as ecofriendly strategies for sustainable agriculture management and soil restoration. The first steps needed to implement these technologies are isolation, screening, and characterization of PGPR that can be potentially applied as bioinoculants to alleviate biotic and/or abiotic stresses. Therefore, a complete and accurate methodological study and laboratory techniques are required to warrant the correct achievement of these steps. This review compiles and details the fundamentals, methods, and procedures of key protocols used in isolation and characterization of PGPR for plant stress alleviation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    CAS  PubMed  Google Scholar 

  • Allwood JW, Goodacre R (2010) An introduction to liquid chromatography–mass spectrometry instrumentation applied in plant metabolomic analyses. Phytochem Anal 21:33–47

    Article  CAS  PubMed  Google Scholar 

  • Arnow LE (1937) Colorimetric determination of the components of 3,4-dihydroxyphenylalanine-tyrosine mixtures. J Biol Chem 118:531–537

    Article  CAS  Google Scholar 

  • Baldani VLD, Alvarez MAB, Baldani JI, Döbereiner J (1986) Establishment of inoculated Azospirillum spp. in the rhizosphere and in roots of field grown wheat and sorghum. Plant Soil 90:35–46

    Article  Google Scholar 

  • Baldani V, Baldani JI, Olivares F, Dobereiner J (1992) Identification and ecology of Herbaspirillum seropedicae and the closely related Pseudomonas rubrisubolbicans. Symbiosis 13:65–73

    Google Scholar 

  • Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal 6(2):71–79

    Article  PubMed  Google Scholar 

  • Banu S, Harishchandra SP , Monnanda SN (2018) Indole acetic acid production by the actinomycetes of coffee plantation soils of western ghats. Int J Curr Res 10(10):74482–74487

    Google Scholar 

  • Barillot CDC, Sarde CO, Bert V, Tarnaud E, Cochet N (2013) A standardized method for the sampling of rhizosphere and rhizoplan soil bacteria associated to a herbaceous root system. Ann Microbiol 63:471–476. https://doi.org/10.1007/s13213-012-0491-y

    Article  CAS  Google Scholar 

  • Bashan Y, Kamnev AA, de-Bashan LE, (2013) Tricalcium phosphate is inappropriate as a universal selection factor for isolating and testing phosphate-solubilizing bacteria that enhance plant growth: a proposal for an alternative procedure. Biol Fertil Soils 49:465–479

    Article  CAS  Google Scholar 

  • Ben ON, Abriouel H, Keleke S, Sánchez VA, Martínez-Cañamero M, Lucas LR, Ortega E, Gálvez A (2008) Bacteriocin-producing Lactobacillus strains isolated from poto poto, a Congolese fermented maize product, and genetic fingerprinting of their plantaricin operons. Int J Food Microbiol 127(1–2):18–25

    Google Scholar 

  • Bergersen FJ (1980) Measurements of nitrogen fixation by direct means. In: Bergersen FJ (ed) Methods for evaluating nitrogen fixation. Wiley, pp 65–110

    Google Scholar 

  • Bestwick CS, Brown IR, Mansfield JW (1998) Localized changes in peroxidase activity accompany hydrogen peroxide generation during the development of a nonhost hypersensitive reaction in lettuce. Plant Physiol 118(3):1067–1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi HJ, Cheigh CI, Kim SB, Pyun YR (2000) Production of a nisin-like bacteriocin by Lactococcus lactis subsp. lactis A164 isolated from Kimchi. J Appl Microbiol 88(4):563–571

    Article  CAS  PubMed  Google Scholar 

  • Choi SK, Park SY, Kim R, Kim SB, Lee CH, Kim JF, Park SH (2009) Identification of a polymyxin synthetase gene cluster of Paenibacillus polymyxa and heterologous expression of the gene in Bacillus subtilis. J Bacteriol 191(10):3350–3358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de León-Martínez J, Yañez-Ocampo G, Wong-Villarreal A (2017) Burkholderia species associated with legumes of Chiapas, Mexico, exhibit stress tolerance and growth in aromatic compounds. Rev Arg Microbiol 49(4):394–401. https://doi.org/10.1016/j.ram.2017.04.009

    Article  Google Scholar 

  • Delaney SM, Mavrodi DV, Bonsall RF, Thomashow LS (2001) phzO, a gene for biosynthesis of 2-hydroxylated phenazine compounds in Pseudomonas aureofaciens 30–84. J Bacteriol 183(1):318–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Della Mónica IF, Godoy MS, Godeas AM, Scervino JM (2017) Fungal extracellular phosphatases: their role in P cycling under different pH and P sources availability. J Appl Microbiol 124:155–165

    Article  PubMed  Google Scholar 

  • Della Mónica IF, Novas MV, Iannone LJ, Querejeta G, Scervino JM, Pitta-Alvarez SI, Regalado JJ (2018) Infection with Micromonospora strain SB3 promotes in vitro growth of Lolium multiflorum plantlets. Plant Cell Tissue Organ Cult 134:445–455. https://doi.org/10.1007/s11240-018-1434-5

    Article  CAS  Google Scholar 

  • Dobereiner J, Marriel I, Nery M (1976) Ecological distribution of Spirillum lipoferum Beijerinck. Can J Microbiol 22(10):1464–1473

    Article  CAS  PubMed  Google Scholar 

  • Egamberdieva D (2009) Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat. Acta Physiol Plant 31(4):861–864

    Article  CAS  Google Scholar 

  • Estrada-De Los Santos P, Bustillos-Cristales RO, Caballero-Mellado J (2001) Burkholderia, a genus rich in plant-associated nitrogen fixers with wide environmental and geographic distribution. Appl Environ Microbiol 67(6):2790–2798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frankenberger WT, Brunner W (1983) Method of detection of auxin-indole-3-acetic acid in soils by high performance liquid chromatography. Soil Sci Soc Am J 47:237–241

    Article  CAS  Google Scholar 

  • Gavaghan CL, Li JV, Hadfield ST, Hole S, Nicholson JK, Wilson ID, Howe PWA, Stanley PD, Holmes E (2011) Application of NMR-based metabolomics to the investigation of salt stress in maize (Zea mays). Phytochem Anal 22:214–224

    Article  CAS  PubMed  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutases: I Occurrence in higher plants. Plant Physiol 59(2):309–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:1–15. https://doi.org/10.6064/2012/963401

    Article  Google Scholar 

  • Gupta R, Singal R, Shankar A, Kuhad RC, Saxena RK (1994) A modified plate assay for screening phosphate solubilizing microorganisms. J Gen Appl Microbiol 40:255–260

    Article  CAS  Google Scholar 

  • Hamilton S, Smith C, Chalk P, Hopmans P (1992) A model based on measurement of soil and plant 15N enrichment to estimate N2 fixation by soybean (Glycine max L. Merrill) grown in pots. Soil Biol Biochem 24(1):71–78

    Article  Google Scholar 

  • He Z, Honeycutt CW (2005) A modified molybdenum blue method for orthophosphate determination suitable for investigating enzymatic hydrolysis of organic phosphates. Commun Soil Sci Plant Anal 36:1373–1383

    Article  CAS  Google Scholar 

  • Hegazy WK, Abdel-Salam MS, Hussain AA, Abo-Ghalia HH, Hafez SS (2018) Improvement of cellulose degradation by cloning of endo-β-1, 3–1, 4 glucanase (bgls) gene from Bacillus subtilis BTN7A strain. J Genet Eng Biotechnol 16(2):281–285

    Article  PubMed  PubMed Central  Google Scholar 

  • Honma M, Shimomura T (1978) Metabolism of 1-aminocyclopropane-1-carboxylic acid. Agric Biol Chem 42(10):1825–1831. https://doi.org/10.1080/00021369.1978.10863261

    Article  CAS  Google Scholar 

  • Islam F, Yasmeen T, Arif MS, Riaz M, Shahzad SM, Imran Q, Ali I (2016) Combined ability of chromium (Cr) tolerant plant growth promoting bacteria (PGPB) and salicylic acid (SA) in attenuation of chromium stress in maize plants. Plant Physiol Biochem 108:456–467

    Article  CAS  PubMed  Google Scholar 

  • Jahangir M, Abdel-Farid IB, Choi YH, Verpoorte R (2008) Metal ion-inducing metabolite accumulation in Brassica rapa. J Plant Physiol 165:1429–1437

    Article  CAS  PubMed  Google Scholar 

  • Joe MM, Deivaraj S, Benson A, Henry AJ, Narendrakumar G (2018) Soil extract calcium phosphate media for screening of phosphate-solubilizing bacteria. Agric Nat Resour 52(3):305–308

    Google Scholar 

  • Kaur T, Sharma D, Kaur A, Manhas RK (2013) Antagonistic and plant growth promoting activities of endophytic and soil actinomycetes. Arch Phytopathol Pflanzenschutz 46(14):1756–1768

    Article  CAS  Google Scholar 

  • Kesaulya H, Baharuddin ZB, Syaiful S (2015) Isolation and physiological characterization of PGPR from potato plant rhizosphere in medium land of Buru Island. Procedia Food Sci 3:190–199. https://doi.org/10.1016/j.profoo.2015.01.021

    Article  Google Scholar 

  • Kumar P, Dubey R, Maheshwari D (2012) Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiol Res 167(8):493–499

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Menon S, Agarwal H, Gopalakrishnan D (2017) Characterization and optimization of bacterium isolated from soil samples for the production of siderophores. Resour Eff Technol 3(4):434–439. https://doi.org/10.1016/j.reffit.2017.04.004

    Article  Google Scholar 

  • Kumari P, Meena M, Upadhyay R (2018) Characterization of plant growth promoting rhizobacteria (PGPR) isolated from the rhizosphere of Vigna radiata (mung bean). Biocatal Agric Biotechnol 16:155–162

    Article  Google Scholar 

  • Leong SA, Neilands JB (1982) Siderophore production by phytopathogenic microbial species. Arch Biochem Biophys 218:351–359

    Article  CAS  PubMed  Google Scholar 

  • Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie AR (2006) Gas chromatography–mass spectrometry-based metabolite profiling in plants. Nat Protoc 1:387–396

    Article  CAS  PubMed  Google Scholar 

  • Magalhaes F, Baldani J, Souto S, Kuykendall J, Dobereiner J (1983) New acid-tolerant Azospirillum species. An Acad Bras Cienc 55:417–430

    Google Scholar 

  • Manoharan MJ, Shalini D, Abitha B, Allen JH, Narendrakumar G (2018) Soil extract calcium phosphate media for screening of phosphate-solubilizing bacteria. Agric Nat Resour 52(3):305–308

    Google Scholar 

  • Marciset O, Jeronimus-Stratingh MC, Mollet B, Poolman B (1997) Thermophilin 13, a nontypical antilisterial poration complex bacteriocin, that functions without a receptor. J Biol Chem 272(22):14277–14284

    Article  CAS  PubMed  Google Scholar 

  • Mehta S, Nautiyal C (2001) An efficient method for qualitative screening of phosphate-solubilizing bacteria. Curr Microbiol 43:51–56

    Article  CAS  PubMed  Google Scholar 

  • Michelsen OB (1957) Photometric determination of phosphorus as molybdovanado-phosphoric acid. Anal Chem 29:60–62

    Article  CAS  Google Scholar 

  • Miller G (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Mirza BS, Rodrigues JL (2012) Development of a direct isolation procedure for free-living diazotrophs under controlled hypoxic conditions. Appl Environ Microbiol 78(16):5542–5549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9(10):490–498

    Article  CAS  PubMed  Google Scholar 

  • Moco S, Bino RJ, De Vos RCH, Vervoort J (2007) Metabolomics technologies and metabolite identification. TrAC Trends Anal Chem 26:855–866

    Article  CAS  Google Scholar 

  • Monton MR, Soga T (2007) Metabolome analysis by capillary electrophoresis-mass spectrometry. J Chromatogr A 1168:237–246

    Article  CAS  PubMed  Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    Article  CAS  Google Scholar 

  • Nautiyal CS (1999) An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170:265–270

    Article  CAS  PubMed  Google Scholar 

  • Numan M, Bashir S, Khan Y, Mumtaz R, Shinwari Z, Khan AL, Khan A, AL-Harrasi A, (2018) Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: a review. Microbiol Res 209:21–32

    Article  CAS  PubMed  Google Scholar 

  • Patil C, Suryawanshi R, Koli S, Patil S (2016) Improved method for effective screening of ACC (1-aminocyclopropane-a-carboxylate) deaminase producing microorganisms. J Microbiol Methods 131:102–104

    Article  CAS  PubMed  Google Scholar 

  • Penrose DM, Glick BR (2003) Methods for isolating and characterizing ACC deaminase containing plant growth-promoting rhizobacteria. Physiol Plant 118:10–15

    Article  CAS  PubMed  Google Scholar 

  • Phetcharat P, Duangpaeng A (2012) Screening of endophytic bacteria from organic rice tissue for indole acetic acid production. Procedia Eng 32:177–183

    Article  Google Scholar 

  • Pikovskaya RI (1948) Mobilization of phosphorus in soil in connection with the vital activity of some microbial species. Mikrobiologiya 17:362–370

    CAS  Google Scholar 

  • Raaijmakers JM, Weller DM, Thomashow LS (1997) Frequency of antibiotic-producing Pseudomonas spp. in natural environments. Appl Environ Microbiol 63:881–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramaiah N, Hill RT, Chun J, Ravel J, Matte MH, Straube WL, Colwell RR (2000) Use of a chiA probe for detection of chitinase genes in bacteria from the Chesapeake Bay. FEMS Microbiol Ecol 134(1):63–71

    Google Scholar 

  • Rattanachaikunsopon P, Phumkhachorn P (2008) Incidence of nisin Z production in Lactococcus lactis subsp. lactis TFF 221 isolated from Thai fermented foods. J Food Prot 71(10):2024–2029

    Article  CAS  PubMed  Google Scholar 

  • Reinhold B, Hurek T, Fendrik I, Pot B, Gillis M, Kersters K, Thielemans S, De Ley J (1987) Azospirillum halopraeferens sp. Nov., a nitrogen-fixing organism associated with roots of Kallar grass (Leptochloa fusca L. Kunth). Int J Syst Evol Microbiol 37(1):43–51. https://doi.org/10.1099/00207713-37-1-43

    Article  Google Scholar 

  • Reis VM, Olivares F, Döbereiner J (1994) Improved methodology for isolation of Acetobacter diazotrophicus and confirmation of its endophytic habitat. World J Microbiol Biotechnol 10(4):401–405

    Article  CAS  PubMed  Google Scholar 

  • Rilling J, Acuña J, Nannipieri P, Cassan F, Maruyama F, Jorquera M (2019) Current opinion and perspectives on the methods for tracking and monitoring plant growth-promoting bacteria. Soil Biol Biochem 130:205–219. https://doi.org/10.1016/j.soilbio.2018.12.012

    Article  CAS  Google Scholar 

  • Sameera B, Prakash HS, Nalini MS (2018) Indole acetic acid production by the actinomycetes of coffee plantation soils of Western Ghats. Int J Curr Res 10:74482–74487

    CAS  Google Scholar 

  • Sasirekha B, Srividya S (2016) Siderophore production by Pseudomonas aeruginosa FP6, a biocontrol strain for Rhizoctonia solani and Colletotrichum gloeosporioides causing diseases in chilli. Agric Nat Resour 50(4):250–256

    CAS  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    Article  CAS  PubMed  Google Scholar 

  • Sharma D, Sharma P, Dev K, Sourirajan A (2019) Endoglucanase gene of M42 aminopeptidase/endoglucanase family from thermophilic Bacillus sp. PW1 and PW2 isolated from Tattapani hot spring, Himachal Pradesh, India. J Genet Eng Biotechnol 17(1):4. https://doi.org/10.1186/s43141-019-0001-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Tapi A, Chollet-Imbert M, Scherens B, Jacques P (2010) New approach for the detection of non ribosomal peptide synthetase genes in Bacillus strains by polymerase chain reaction. Appl Microbiol Biotechnol 85:1521–1531

    Article  CAS  PubMed  Google Scholar 

  • Teather R, Wood P (1982) Use of congo red-polysaccharide interaction in enumeration and characterization of cellulytic bacteria from the bovine rumen. Appl Environ Microbiol 43:777–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vejan P, Abdullah R, Khadiran T, Ismail S, Nasrulhaq BA (2016) Role of plant growth promoting rhizobacteria in agricultural sustainability-a review. Molecules 21(5):573. https://doi.org/10.3390/molecules21050573

    Article  CAS  PubMed Central  Google Scholar 

  • Wahyudi AT, Astuti RP, Widyawati A, Mery A, Nawangsih AA (2011) Characterization of Bacillus sp. strains isolated from rhizosphere of soybean plants for their use as potential plant growth for promoting rhizobacteria. J Microbiol Antimicrob 3(2):34–40. https://doi.org/10.5897/JMA.9000020

    Article  Google Scholar 

  • Weckwerth W (2003) Metabolomics in systems biology. Ann Rev Plant Biol 54:669–689

    Article  CAS  Google Scholar 

  • Xie CH, Yokota A (2005) Azospirillum oryzae sp. Nov., a nitrogen-fixing bacterium isolated from the roots of the rice plant Oryza sativa. Int J Syst Evol Microbiol 55:1435–1438

    Article  CAS  PubMed  Google Scholar 

  • Zakharova EA, Shcherbakov AA, Brudnik VV, Skripko NG, Bulkhin NSh, Ignatov VV (1999) Biosynthesis of indole-3-acetic acid in Azospirillum brasilense. Eur J Biochem 259:572–576

    Article  CAS  PubMed  Google Scholar 

  • Zheng BX, Ibrahim M, Zhang DP, Bi QF, Li HZ, Zhou GW, Ding K, Peñuelas J, Zhu YG, Yang XR (2018) Identification and characterization of inorganic-phosphate-solubilizing bacteria from agricultural fields with a rapid isolation method. AMB Express 8(1):47. https://doi.org/10.1186/s13568-018-0575-6

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We highly appreciate the helpful comments made by the editors and reviewers.

Funding

We thank Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT, PICT 2016–2060, Della Mónica IF) and Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) for funding this work.

Author information

Authors and Affiliations

Authors

Contributions

Original Idea: YOG and DMIF. Literature search: DMIF, YOG, SRP, WA, and RVP. Writing—Original draft: DMIF, YOG, SRP, and WA, and critical review and Editing: DMIF and YOG. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Ivana F. Della Mónica or Gustavo Yañez-Ocampo.

Ethics declarations

Conflict of interest

No conflicts of interest declared.

Additional information

Communicated by Erko Stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 155 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Della Mónica, I.F., Wong Villarreal, A., Stefanoni Rubio, P.J. et al. Exploring plant growth-promoting rhizobacteria as stress alleviators: a methodological insight. Arch Microbiol 204, 316 (2022). https://doi.org/10.1007/s00203-022-02909-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00203-022-02909-7

Keywords

Navigation