Skip to main content
Log in

Anaerobic digestion characteristics and key microorganisms associated with low-temperature rapeseed cake and sheep manure fermentation

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

In this study, gas production from mixed anaerobic fermentation of rapeseed cake and sheep manure at low temperature (15.2–17.8 °C) was investigated in Qinghai rural household biogas digesters to understand the temporal dynamics of key microbial populations involved in fermentations. Different raw material ratios resulted in significantly different effects on biogas yields and microbial community compositions over 40 days. When the dry weight ratio of sheep manure to rapeseed cake was 1:2, the highest level of cumulative gas production was observed (122.92 m3·t−1). Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria were the dominant bacterial phyla among the 29 digester samples (total relative abundances > 79.23%), followed by Synergistetes (4.09–10.7%). Lactobacillus was the most abundant genus in the biogas digesters with high rapeseed cake contents (average relative abundances: 14.68%), while Peptoniphilus exhibited higher abundances (12.69%) in the mixed treatments. In addition, unclassified Synergistaceae abundances (6.64%) were positively associated with biogas production variation among treatments. Bacteroides (5.74%) and Pseudomonas (5.24%) both accounted for larger proportions of communities in the digesters that used more sheep manure. Methanomicrobiales (66.55%) was the most dominant archaeal group among digesters, with Methanogenium (41.82%) and Methanoculleus (16.55%) representing the main gas-producing archaeal genera; they were more abundant in biogas digesters with higher sheep manure contents and higher rapeseed cake contents, respectively. VFAs and pH were the main factors associated with differences in microbial communities among the 29 samples. Specifically, VFA concentrations were positively correlated with Lactobacillus, Methanoculleus and Methanothrix abundances, while pH was positively correlated with Bacteroides, Pseudomonas, and Methanobacterium abundances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Download references

Acknowledgements

We gratefully acknowledge financial support from the Natural Science Foundation of Qinghai Province (2021-ZJ-921). We also thank LetPub (www.letpub.com) for providing linguistic assistance during the preparation of this manuscript.

Funding

This work was supported by the Natural Science Foundation of Qinghai Province (2021-ZJ-921).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Han.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Communicated by Erko Stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 25 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Xiong, R., Li, Y. et al. Anaerobic digestion characteristics and key microorganisms associated with low-temperature rapeseed cake and sheep manure fermentation. Arch Microbiol 204, 188 (2022). https://doi.org/10.1007/s00203-022-02796-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00203-022-02796-y

Keywords

Navigation