Abstract
Antimicrobial peptides (AMP) are promising novel antibiotics but exhibit low stability and can be toxic. The AMP encapsulation can be used to protect the drug and control its release rates. The Lr-AMP1f encapsulated into chitosan nanoparticle (NP) by ionic gelation method reached 90% efficiency. The results indicated that the hydrodynamic particle size of NPs increased from 196.1 ± 3.14 nm (free NP) to 228.1 ± 12.22 nm (nanoencapsulated Lr-AMP1f), while the atomic force microscope showed the spherical shape. The Zeta potential of the nanoencapsulated Lr-AMP1f was high (+ 35 mV). These AMP-loaded NPs exhibited stability for up to 21 days of storage. The minimum inhibitory concentration (MIC) of free Lr-AMP1f was 8 µg/mL for E. coli and S. epidermidis. However, the nanoencapsulated Lr-AMP1f produced a bacteriostatic effect against both bacteria at 8 µg/mL. The MIC of nanoencapsulated Lr-AMP1f was 16 µg/mL for E. coli and 32 for S. epidermidis. Nanoencapsulated Lr-AMP1f was nontoxic to HEK293 cells. Promisingly, chitosan NP can be used as a vehicle for the antibacterial application of new AMP (Lr-AMP1f).




Similar content being viewed by others

Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Bahar AA, Ren D (2013) Antimicrobial peptides. Pharm 6:1543–1575. https://doi.org/10.3390/ph6121543
Bhattacharyya A, Mukherjee D, Mishra R, Kunduac PP (2017) Preparation of polyurethane—alginate/chitosan core shell nanoparticles for the purpose of oral insulin delivery. Eur Polym J 92:294–313. https://doi.org/10.1016/j.eurpolymj.2017.05.015
Booysen LL, Kalombo L, Brooks E, Hansen R, Gilliland J, Gruppo V, Lungenhofer P, Semete-Makokotlela B, Swai HS, Kotze AF, Lenaerts A, du Plessis LH (2013) In vivo/in vitro pharmacokinetic and pharmacodynamic study of spray-dried poly-(dl-lactic-co-glycolic) acid nanoparticles encapsulating rifampicin and isoniazid. Int J Pharm 444(1–2):10–17. https://doi.org/10.1016/j.ijpharm.2013.01.038
Brandelli A (2012) Nanostructures as promising tools for delivery of antimicrobial peptides. Mini-Rev Med Chem 12:731–741. https://doi.org/10.2174/138955712801264774
Brown S, Maria JPS, Walker S (2013) Wall teichoic acids of gram-positive bacteria. Annu Rev Microbiol 67:313–336. https://doi.org/10.1146/annurev-micro-092412-155620
Calvo P, Remuñán-López C, Vila-Jato JL, Alonso MJ (1997) Novel hydrofilic chitosan-polyethylene oxide nanoparticles as protein carriers. J App Polym Sci 63:125–132. https://doi.org/10.1002/(SICI)1097-4628(19970103)63:1%3c125::AID-APP13%3e3.0.CO;2-4
Chen J, Wang F, Liu Q, Du J (2014) Antibacterial polymeric nanostructures for biomedical applications. Chem Comm 50:14482–14493. https://doi.org/10.1039/C4CC03001J
Chung YC, Su Y, Chen C, Jia G, Wang H, Wu JCG, Lin J (2004) Relationship between antibacterial activity of chitosans and surface characteristics of cell wall. Acta Pharmacol Sin 25:932–936
Clogston JD, Patri AK (2011) Zeta potential measurement. Methods Mol Biol 697:63–70. https://doi.org/10.1007/978-1-60327-198-1_6
CLSI (2015) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. M07-A10. Clinical and Laboratory Standards Institute, 10rd. Wayne
Cruz J, Flórez J, Torres R, Urquiza M, Gutiérrez JA, Guzmán F, Ortiz CC (2017) Antimicrobial activity of a new synthetic peptide loaded in polylactic acid or poly (lactic-co-glycolic) acid nanoparticles against Pseudomonas aeruginosa, Escherichia coli O157:H7 and methicillin resistant Staphylococcus aureus (MRSA). Nanotechnology 28:135102. https://doi.org/10.1088/1361-6528/aa5f63
Ding R, Xie F, Hu Y, Fu SZ, Wu JB, Fan J, He WF, He Y, Yang LL, Lin S, Wen QL (2017) Preparation of endostatin-loaded chitosan nanoparticles and evaluation of the antitumor effect of such nanoparticles on the Lewis lung cancer model. Drug Deliv 24:300–308. https://doi.org/10.1080/10717544.2016.1247927
Dubey S, Dubey S, Avadhani K, Mutalik S, Sivadasan SM, Maiti B, Girisha SK, Venugopal MN, Mutoloki S, Evensen Ø, Karunasagar I, Munang’andu HM (2016) Edwardsiella tarda OmpA encapsulated in chitosan nanoparticles shows superior protection over inactivated whole cell vaccine in orally vaccinated fringed-lipped peninsula carp (Labeo fimbriatus). Vaccines 40:1–14. https://doi.org/10.3390/vaccines4040040
Dyvia K, Vijayan S, George TK, Jisha MS (2017) Antimicrobial properties of chitosan nanoparticles: mode of action and factors affecting activity. Fibers Polym 18:221–230. https://doi.org/10.1007/s12221-017-6690-1
Edson JA, Kwon YJ (2016) Design, challenge and promise of stimuli-responsive nanoantibiotics. Nano Converg 3:1–13. https://doi.org/10.1186/s40580-016-0085-7
Frère J, Rigali S (2016) The alarming increase in antibiotic resistant bacteria. Drug Target Rev 3:26–30
Frishman WH (2019) Ten secrets to a long life. Am J Med 132:564–566. https://doi.org/10.1016/j.amjmed.2018.12.020
Gao W, Chen Y, Zhang Y, Zhang Q, Zhang L (2018) Nanoparticle-based local antimicrobial drug delivery. Adv Drug Deliv Rev 127:46–57. https://doi.org/10.1016/j.addr.2017.09.015
Garcia-Orue I, Gainza G, Girbau C, Alonso R, Aguirre JJ, Pedraz JL, Igartua M, Hernandez RM (2016) LL37 loaded nanostructured lipid carriers (NLC): a new strategy for the topical treatment of chronic wounds. Eur J Pharm Biopharm 108:310–316. https://doi.org/10.1016/j.ejpb.2016.04.006
Garg U, Chauhan S, Nagaich U, Jain N (2019) Current advances in chitosan nanoparticles based drug delivery and targeting. Adv Pharm Bull 9:195–204. https://doi.org/10.15171/apb.2019.023
Gwyddion software (2019) User guide. version 2.28 [Internet]. Czech Republic: Czech Metrology Institute, Brno cited 12 Jul 2019
Hancock RE, Sahl HG (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24:1551–1557. https://doi.org/10.1038/nbt1267
Holdrich M, Liu S, Epe M, Lämmerhofer M (2017) Taylor dispersion analysis, resonant mass measurement and bioactivity of pepsin-coated gold nanoparticles. Talanta 167:67–74. https://doi.org/10.1016/j.talanta.2017.02.010
ISO 10993‐5:2009 (2009) Biological evaluation of medical devices—part 5: tests for in vitro cytotoxicity; German version EN ISO 10993‐5
Kaasalainen M, Aseyev V, von Haartman E, Karaman DŞ, Mäkilä E, Tenhu H, Rosenholm J, Salonen J (2017) Size, stability, and porosity of mesoporous nanoparticles characterized with light scattering. Nanoscale Res Lett 12(1):74. https://doi.org/10.1186/s11671-017-1853-y
Kang SJ, Park SJ, Mishig-Ochir T, Lee BJ (2014) Antimicrobial peptides: therapeutic potentials. Expert Rev Anti Infect Ther 12:1477–1486. https://doi.org/10.1586/14787210.2014.976613
Kaspar O, Jakubec M, Stepanek F (2013) Characterization of spray dried chitosan–TPP microparticles formed by two- and three-fluid nozzles. Powder Technol 240:31–40. https://doi.org/10.1016/j.powtec.2012.07.010
Kong M, Chen XG, Xing K, Park HJ (2010) Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol 144:51–63. https://doi.org/10.1016/j.ijfoodmicro.2010.09.012
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275. https://www.jbc.org/article/S0021-9258(19)52451-6/pdf
Maruyama C, Guilger M, Pascoli M, Bileshy-José N, Abhilash PC, Fraceto LF, de Lima R (2016) Nanoparticles based on chitosan as carriers for the combined herbicides Imazapic and Imazapyr. Sci Rep 6:19768. https://doi.org/10.1038/srep19768
Morris GA, Castile J, Smith A, Adams GG, Harding SE (2011) The effect of prolonged storage at different temperatures on the particle size distribution of tripolyphosphate (TPP)—chitosan nanoparticles. Carbohydr Polym 84(4):1430–1434. https://doi.org/10.1016/j.carbpol.2011.01.044
Munita JM, Arias CA (2016) Mechanisms of antibiotic resistance. Microbiol Spectr 4:1–37. https://doi.org/10.1128/microbiolspec.VMBF-0016-2015
Narayanan K, Subrahmanyam VM, Rao JV (2014) A fractional factorial design to study the effect of process variables on the preparation of hyaluronidase loaded PLGA nanoparticles. Enzyme Res 2014:162962. https://doi.org/10.1155/2014/162962
Nordström R, Malmsten M (2017) Delivery systems for antimicrobial peptides. Adv Colloid Interface Sci 242:17–34. https://doi.org/10.1016/j.cis.2017.01.005
Othman N, Masarudin MJ, Kuen CY, Dasuan NA, Abdullah LC, Md Jamil SNA (2018) Synthesis and optimization of chitosan nanoparticles loaded with L-ascorbic acid and thymoquinone. Nanomaterials 8:920. https://doi.org/10.3390/nano8110920
Pal I, Brahmkhatri VP, Bera S, Bhattacharyya D, Quirishi Y, Bhunia A, Atreya HS (2016) Enhanced stability and activity of an antimicrobial peptide in conjugation with silver nanoparticle. J Colloid Interface Sci 483:385–393. https://doi.org/10.1016/j.jcis.2016.08.043
Pankey GA, Sabath LD (2004) Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of gram-positive bacterial infections. Clin Infec Dis 38:864–870. https://doi.org/10.1086/381972
Phan HT, Haes AJ (2019) What does nanoparticle stability mean? J Phys Chem C Nanomater Interfaces 123(27):16495–16507. https://doi.org/10.1021/acs.jpcc.9b00913
Piras AM, Maisetta G, Sandreschi S, Gazzarri M, Bartoli C, Grassi L, Esin S, Chiellini F, Batoni G (2015a) Chitosan nanoparticles loaded with the antimicrobial peptide temporin B exert a long-term antibacterial activity in vitro against clinical isolates of Staphylococcus epidermidis. Front Microbiol 6:372. https://doi.org/10.3389/fmicb.2015.00372
Piras AM, Sandreschi S, Maisetta G, Esin S, Batoni G, Chiellini F (2015b) Chitosan nanoparticles for the linear release of model cationic peptide. Pharm Res 32:2259–2265. https://doi.org/10.1007/s11095-014-1615-9
Rao PS, Bajaj RK, Mann B, Arora S, Tomar SK (2016) Encapsulation of antioxidant peptide enriched casein hydrolysate using maltodextrin–gum arabic blend. J Food Sci Technol 53:3834–3843. https://doi.org/10.1007/s13197-016-2376-8
Ruden S, Hilpert K, Berditsch M, Wadhwani P, Ulrich AS (2009) Synergistic interaction between silver nanoparticles and membrane-permeabilizing antimicrobial peptides. Antimicrob Agents Chemother 53:3538–3540. https://doi.org/10.1128/aac.01106-08
Sandreschi S, Piras AM, Batoni G, Chiellini F (2016) Perspectives on polymeric nanostructures for the therapeutic application of antimicrobial peptides. Nanomedicine 11:1729–1744. https://doi.org/10.2217/nnm-2016-0057
Seil JT, Webster TJ (2012) Antimicrobial applications of nanotechnology: methods and literature. Int J Nanomedicine 7:2767–2781. https://doi.org/10.2147/ijn.s24805
Sharma A, Vaghasiya K, Ray E, Verma RK (2018) Nano-encapsulated HHC10 host defense peptide (HDP) reduces the growth of Escherichia coli via multimodal mechanisms. Artif Cells Nanomed Biotech 46:156–165. https://doi.org/10.1080/21691401.2018.1489823
Silva FP, Machado MCC (2012) Antimicrobial peptides: clinical relevance and therapeutic implications. Peptides 36:308–314. https://doi.org/10.1016/j.peptides.2012.05.014
Taju G, Kumar DV, Majeed SA, Vimal S, Tamizhvanan S, Kumar SS, Sivakumar S, Basha AN, Haribabu P, Kannabiran K, Hameed ASS (2018) Delivery of viral recombinant VP28 protein using chitosan tripolyphosphate nanoparticles to protect the whiteleg shrimp Litopenaeus vannamei from white spot syndrome virus infection. Int J Biol Macromol 107:1131–1141. https://doi.org/10.1016/j.ijbiomac.2017.09.094
Tavares LS, de Souza VC, Schmitz Nunes V, Nascimento Silva O, de Souza GT, Farinazzo Marques L, Capriles Goliatt PVZ, Facio Viccini L, Franco OL, de Oliveira SM (2020) Antimicrobial peptide selection from Lippia spp leaf transcriptomes. Peptides 129:170317. https://doi.org/10.1016/j.peptides.2020.170317
Wang Y, Yuan Q, Feng W, Pu W, Ding J, Zhang H, Li X, Yang B, Dai Q, Cheng L, Wang J, Sun F, Zhang D (2019) Targeted delivery of antibiotics to the infected pulmonary tissues using ROS-responsive nanoparticles. J Nanobiotechnology 17:1–16. https://doi.org/10.1186/s12951-019-0537-4
Water JJ, Smart S, Franzyk H, Foged C, Nielsen HM (2015) Nanoparticle-mediated delivery of the antimicrobial peptide plectasin against Staphylococcus aureus in infected epithelial cells. Eur J Pharm Biopharm 92:65–73. https://doi.org/10.1016/j.ejpb.2015.02.009
World Health Organization (2018) Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. 27 Feb 2017. Internet: http://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf
Yadav SC, Kumari A, Yadav R (2011) Development of peptide and protein nanotherapeutics by nanoencapsulation and nanobioconjugation. Peptides 32:173–187. https://doi.org/10.1016/j.peptides.2010.10.003
Yin LM, Edwards MA, Li J, Yip CM, Deber CM (2012) Roles of hydrophobicity and charge distribution of cationic antimicrobial peptides in peptide-membrane interactions. J Biol Chem 287:7738–7745. https://doi.org/10.1074/jbc.m111.303602
Zavareze ER, Telles AC, El Halal SLM, Rocha M, Colussi R, Assis LM, Castro LAS, Dias ARG, Prentice-Hernández C (2014) Production and characterization of encapsulated antioxidative protein hydrolysates from Whitemouth croaker (Micropogonias furnieri) muscle and byproduct. LWT Food Sci Technol 59:841–848. https://doi.org/10.1016/j.lwt.2014.05.013
Zhang Z, Feng SS (2006) The drug encapsulation efficiency, in vitro drug release, cellular uptake and cytotoxicity of paclitaxel-loaded poly(lactide)-tocopheryl polyethylene glycol succinate nanoparticles. Biomaterials 27:4025–4033. https://doi.org/10.1016/j.biomaterials.2006.03.006
Zhang H, Jung J, Zhao Y (2016) Preparation, characterization and evaluation of antibacterial activity of catechins and catechins–Zn complex loaded-chitosan nanoparticles of different particle sizes. Carbohydr Polym 137:82–91. https://doi.org/10.1016/j.carbpol.2015.10.036
Zuo W, Qu W, Li N, Yu R, Hou Y, Liu Y, Gou G, Yang J (2018) Fabrication of multicomponent amorphous bufadienolides nanosuspension with wet milling improves dissolution and stability. Artif Cells Nanomed Biotechnol 46(7):1513–1522. https://doi.org/10.1080/21691401.2017.1375938
Funding
The research was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001; Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Rede de Mineira de Pesquisa e Inovação para Bioengenharia de Nanossistemas (RM PI-BEM), Rede de Nanotecnologia Aplicada ao Agronegócio (AGRONANO), and Pós-Graduação em Ciências Biológicas (PPGCBIO).
Author information
Authors and Affiliations
Contributions
EMS, LST, and LF contributed on experimental procedures; EMS, LST, HB, MM, and MOS contributed on experimental procedures and analysis. Finally, LST, MM, and MOS contributed also to manuscript writing and corrections.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no conflict of interest.
Additional information
Communicated by Erko Stackebrandt.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
dos Santos, E.M., Tavares, L.S., Fayer, L. et al. Nanoencapsulated Lippia rotundifolia antimicrobial peptide: synthesis, characterization, antimicrobial activity, and cytotoxicity evaluations. Arch Microbiol 204, 184 (2022). https://doi.org/10.1007/s00203-022-02787-z
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00203-022-02787-z

