Skip to main content

Advertisement

Log in

Effect of methylpyrazoles and coumarin association on the growth of Gram-negative bacteria

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

One approach to overcome the antimicrobial resistance of many pathogens is to associate compounds with antimicrobial properties and obtain combinations superior compared to the effect of each compound. To identify a possible potentiating effect, we tested and analyzed the inhibitory effect of the combination of coumarin with two pyrazole derivatives, 1,1′-methandiylbis (3,5-dimethyl-1H-pyrazole (AM4) and 3,5-dimethyl-1H-pyrazol-1-yl) methanol 3,5-dimethyl-1-hydroxymethylpyrazol (SAM4). A clear synergistic effect was recorded when coumarin was associated with SAM4, in which case the Fractional Inhibitory Concentration Index (FICI) had a value equal to 0.468 for Citrobacter freundii, Proteus mirabilis, and E. coli. In the other cases, however, both the association between coumarin and AM4 and coumarin SAM4 had only an additive effect (FICI = 0.937–1.00). The bactericidal effect of the coumarin–pyrazole combination over time was better in all cases compared to the effect of the compounds used separately. The viability of the bacterial cells at sub-inhibitory concentrations of the tested compounds was variable, depending on both the type of compound and the bacterial strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

References

  • Ahn M, Gunasekaran P, Rajasekaran G, Kim EY, Lee SJ, Bang G, Kun C, Jae-Kyung H, Hyun-Ju L, Young HJ, Nam-Hyung K, Eun KR, Song YS, Jeong KB (2017) Pyrazole derived ultra-short antimicrobial peptidomimetics with potent anti-biofilm activity. Eur J Med Chem 125:551–564

    Article  CAS  Google Scholar 

  • Alexander HK, MacLean RC (2020) Stochastic bacterial population dynamics restrict the establishment of antibiotic resistance from single cells. PNAS 117(32):19455–19464

    Article  CAS  Google Scholar 

  • Al-Majedy YK, Kadhum AAH, Al-Amiery AA, Mohamad AB (2017) Coumarins: the antimicrobial agents. Syst Rev Pharm 8:62–70

    Article  CAS  Google Scholar 

  • Alnufaie R, Raj H, KC, Alsup N, Whitt J, Chambers SA, Gilmore D, Alam MA, (2020) Synthesis and antimicrobial studies of coumarin-substituted pyrazole derivatives as potent Anti-Staphylococcus aureus agents. Molecules 25(2758):1–16. https://doi.org/10.3390/molecules25122758

    Article  CAS  Google Scholar 

  • Basile A, Sorbo S, Spadaro V, Bruno M, Maggio A, Faraone N et al (2009) Antimicrobial and antioxidant activities of coumarins from the roots of Ferulago campestris (Apiaceae). Molecules 14(3):939–952

    Article  CAS  Google Scholar 

  • B’Bhatt H, Sharma S (2017) Synthesis and antimicrobial activity of pyrazole nucleus containing 2-thioxothiazolidin-4-one derivatives. Arabian J Chem 10:S1590–S1596. https://doi.org/10.1016/j.arabjc.2013.05.029

    Article  CAS  Google Scholar 

  • Braoudaki M, Hilton AC (2004) Adaptive resistance to biocides in Salmonella enterica and Escherichia coli O157 and cross-resistance to antimicrobial agents. J Clin Microbiol 42(1):73–78

    Article  CAS  Google Scholar 

  • Brockhurst MA, Harrison F, Veening JW, Harrison E, Blackwell G, Iqbal Z, Maclean C (2019) Assessing evolutionary risks of resistance for new antimicrobial therapies. Nat Ecol Evol 3:515–517

    Article  Google Scholar 

  • Buzon-Duran L, Alonso-Calleja C, Riesco-Pelaez F, Capita R (2017) Effect of sub-inhibitory concentrations of biocides on the architecture and viability of MRSA biofilms. Food Microbiol 65:294–301

    Article  CAS  Google Scholar 

  • Cattoir V, Felden B (2019) Future antibacterial strategies: from basic concepts to clinical challenges. J Infect Dis 220:350–360

    Article  Google Scholar 

  • Chavan RR, Hosamani KM (2018) Microwave-assisted synthesis, computational studies and antibacterial/anti-inflammatory activities of compounds based on coumarin–pyrazole hybrid. R Soc Open Sci 5:2–16. https://doi.org/10.1098/rsos.172435 (172435)

    Article  CAS  Google Scholar 

  • Diggle SP, Whiteley M (2020) Microbe Profile: Pseudomonas aeruginosa: opportunistic pathogen and lab rat. Microbiology 166(1):30–33. https://doi.org/10.1099/mic.0.000860

    Article  CAS  PubMed  Google Scholar 

  • Domalaon R, Idowu T, Zhanel GG, Schweizer F (2018) Antibiotic hybrids: the next generation of agents and adjuvants against Gram-negative pathogens? Clin Microbiol Rev. https://doi.org/10.1128/CMR.00077-17

    Article  PubMed  PubMed Central  Google Scholar 

  • El-Seedi HR (2007) Antimicrobial arylcoumarins from Asphodelus microcarpus. J Nat Prod 70(1):118–120

    Article  CAS  Google Scholar 

  • Fadare FT, Adefisoye MA, Okoh AI (2020) Occurrence, identification, and antibiogram signatures of selected Enterobacteriaceae from Tsomo and Tyhume rivers in the Eastern Cape Province Republic of South Africa. PLoS ONE 15(12):e0238084. https://doi.org/10.1371/journal.pone.0238084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geweely NS (2009) Novel inhibition of some pathogenic fungal and bacterial species by new synthetic phytochemical coumarin derivatives. Ann Microbiol 59(2):359–368

    Article  CAS  Google Scholar 

  • Girlich D, Bonnin RA, Dortet L, Naas T (2020) Genetics of acquired antibiotic resistance genes in Proteus spp. Front Microbiol 11:256. https://doi.org/10.3389/fmicb.2020.00256

    Article  PubMed  PubMed Central  Google Scholar 

  • Haddadin RNS, Saleh S, Al-Adham ISI, Collier BTEJ, PJ, (2010) The effect of subminimal inhibitory concentrations of antibiotics on virulence factors expressed by Staphylococcus aureus biofilms. J Appl Microbiol 108:1281–1291

    Article  CAS  Google Scholar 

  • Jain N, Jansone I, Obidenova T, Simanis R, Meisters J, Straupmane D, Reinis A (2021) Antimicrobial resistance in nosocomial isolates of Gram-negative bacteria: public health implications in the latvian context. Antibiotics 10:791. https://doi.org/10.3390/antibiotics10070791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung J-W, Kim N-J, Yun H, Han Y (2018) Recent advances in synthesis of 4-arylcoumarins. Molecules 23:2417. https://doi.org/10.3390/molecules23102417

    Article  CAS  PubMed Central  Google Scholar 

  • Kumar S, Saini V, Maurya IK, Sindhu J, Kumari M, Kataria R et al (2018) Design, synthesis, DFT, docking studies and ADME prediction of some new coumarinyl linked pyrazolylthiazoles: Potential standalone or adjuvant antimicrobial agents. PLoS ONE 13(4):1–23. https://doi.org/10.1371/journal.pone.0196016 (e0196016)

    Article  CAS  Google Scholar 

  • Liu H, Ren Z-L, Wang W, Gong JX, Chu MJ, Ma QW, Wang JC, Lv X-H (2018) Novel coumarin–pyrazole carboxamide derivatives as potential topoisomerase II inhibitors: design, synthesis and antibacterial activity. Eur J Med Chem 157:81–87. https://doi.org/10.1016/j.ejmech.2018.07.059

    Article  CAS  PubMed  Google Scholar 

  • Lupsor S, Aonofriesei F, Iovu M (2012) Antibacterial activity of aminals and hemiaminals of pyrazole and imidazole. Med Chem Res 21(10):3035–3042. https://doi.org/10.1007/s00044-011-9839-2

    Article  CAS  Google Scholar 

  • Lupsor S, Tarcomnicu I, Aonofriesei F, Iovu M (2011) Microwave-assisted synthesis of 1-hydroxymethylazoles. Rev Chim 62(5):493–498

    CAS  Google Scholar 

  • Maertens H, Demeyere K, De Reu K et al (2020) Effect of subinhibitory exposure to quaternary ammonium compounds on the ciprofloxacin susceptibility of Escherichia coli strains in animal husbandry. BMC Microbiol 20:155. https://doi.org/10.1186/s12866-020-01818-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matos MJ, Vazquez-Rodriguez S, Fonseca A, Uriarte E, Santana L, Borges F (2017) Heterocyclic antioxidants in nature: coumarins. Curr Org Chem 21:311–324

    Article  CAS  Google Scholar 

  • Motyl M, Dorso K, Barret J, Giacobbe R (2005) Basic microbiological techniques for antibacterial drug discovery. Curr Protoc Pharmacol. https://doi.org/10.1002/0471141755.ph13a03s31

    Article  Google Scholar 

  • Narimisa N, Amraei F, Kalani BS, Mohammadzadeh R, Jazia FM (2020) Effects of sub-inhibitory concentrations of antibiotics and oxidative stress on the expression of type II toxin-antitoxin system genes in Klebsiella pneumoniae. J Glob Antimicrob Resist 21:51–56

    Article  Google Scholar 

  • Ojala T, Remes S, Haansuu P, Vuorela H, Hiltunen R, Haahtela K et al (2000) Antimicrobial activity of some coumarin containing herbal plants growing in Finland. J Ethnopharmacol 73(1–2):299–305

    Article  CAS  Google Scholar 

  • Pisano MB, Kumar A, Medda R, Gatto G, Pal R, Fais A, Era B, Cosentino S, Uriarte E, Santana L, Pintus F, Matos MJ (2019) Antibacterial activity and molecular docking studies of a selected series of hydroxy-3-arylcoumarins. Molecules 24(2815):1–12. https://doi.org/10.3390/molecules24152815

    Article  Google Scholar 

  • Sanhueza L, Melo R, Montero R, Maisey K, Mendoza L, Wilkens M (2017) Synergistic interactions between phenolic compounds identified in grape pomace extract with antibiotics of different classes against Staphylococcus aureus and Escherichia coli. PLoS ONE. https://doi.org/10.1371/journal.pone.0172273

    Article  PubMed  PubMed Central  Google Scholar 

  • Simoes NG, Bettencourt AF, Monge N, Ribeiro IAC (2017) Novel antibacterial agents: an emergent need to win the battle against infections. Mini Rev Med Chem 17:1364–1376

    Article  CAS  Google Scholar 

  • Singh AK, Das S, Kumar S, Gajamer VR, Najar IN, Lepcha YD, Tiwari HK, Singh S (2020) Distribution of antibiotic-resistant enterobacteriaceae pathogens in potable spring water of Eastern Indian Himalayas: emphasis on virulence gene and antibiotic resistance genes in Escherichia coli. Front Microbiol 11:581072. https://doi.org/10.3389/fmicb.2020.581072

    Article  PubMed  PubMed Central  Google Scholar 

  • Sindeldecker D, Stoodley P (2021) The many antibiotic resistance and tolerance strategies of Pseudomonas aeruginosa. Biofilm 3:100056. https://doi.org/10.1016/j.bioflm.2021.100056

    Article  PubMed  PubMed Central  Google Scholar 

  • Soumet C, Méheust D, Pissavin C, Le Grandois P, Frémaux B, Freurer C et al (2016) Reduced susceptibilities to biocides and resistance to antibiotics in food associated bacteria following exposure to quaternary ammonium compounds. J Appl Microbiol 121:1275–1281

    Article  CAS  Google Scholar 

  • Souza S, Delle Monache MF, Smania A (2005) Antibacterial activity of coumarins. Z Naturforsch 60c:693–700

    Article  Google Scholar 

  • Stanciu G, Aonofriesei F, Cristache N, Lupsor S (2017) Quantitative analysis and antibacterial activity of some coumarins extracts. Rev Chim 68(8):1752–1756

    Article  CAS  Google Scholar 

  • Sun J, Ding W-X, Hong X-P, Zhang K-Y, Zou Y (2012) Synthesis and antimicrobial activities of 4-aryl-3,4-dihydrocoumarins and 4-arylcoumarins. Chem Nat Compd 48:16–22

    Article  CAS  Google Scholar 

  • Tan N, Bilgin M, Tan E, Miski M (2017) Antibacterial activities of pyrenylated coumarins from the roots of Prangos hulusii. Molecules 22(7):1098

    Article  Google Scholar 

  • Veselinović JB, Veselinović AM, Nikolić GM, Pešic SZ, Stojanović DB, Matejić JS, Mihajilov-Krstev TM (2014) Antibacterial potential of selected 4-phenyl hydroxycoumarins: integrated in vitro and molecular docking studies. Med Chem Res 24:1626–1634

    Article  Google Scholar 

  • Whitt J, Duke C, Sumlin A, Chambers SA, Alnufaie R, Gilmore D, Fite T, Basnakian AG, Alam MA (2019a) Synthesis of hydrazone derivatives of 4-[4-Formyl-3-(2-oxochromen-3-yl)pyrazol-1-yl] benzoic acid as potent growth inhibitors of antibiotic-resistant Staphylococcus aureus and Acinetobacter baumannii. Molecules 24:2051. https://doi.org/10.3390/molecules24112051

    Article  CAS  PubMed Central  Google Scholar 

  • Whitt J, Duke C, Ali MA, Chambers SA, Khan MMK, Gilmore D, Alam MA (2019b) Synthesis and antimicrobial studies of 4-[3-(3-Fluorophenyl)-4-formyl-1H-pyrazol-1-yl] benzoic acid and 4-[3-(4-Fluorophenyl)-4-formyl-1H-pyrazol-1-yl] benzoic acid as potent growth inhibitors of drug-resistant bacteria. ACS Omega 4:14284–14293

    Article  CAS  Google Scholar 

  • Wojnicz D, Tichaczek-Goska D (2013) Effect of sub-minimum inhibitory concentrations of ciprofloxacin, amikacin and colistin on biofilm formation and virulence factors of Escherichia coli planktonic and biofilm forms isolated from human urine. Braz J Microbiol 44(1):259–265

    Article  CAS  Google Scholar 

  • Zakeyah AA, Whitt J, Duke C, Gilmore DF, Meeker DG, Smeltzer MS, Alam MA (2018) Synthesis and antimicrobial studies of hydrazone derivatives of 4-[3-(2,4-difluorophenyl)-4-formyl-1H-pyrazol-1-yl]benzoic acid and 4-[3-(3,4-difluorophenyl)-4-formyl-1H-pyrazol-1-yl]benzoic acid. Bioorg Med Chem Lett 28:2914–2919

    Article  CAS  Google Scholar 

  • Zhanel GG, Hoban DJ, Harding GKM (1992) Subinhibitory antimicrobial concentrations: a review of in vitro and in vivo data. Can J Infect Dis 3(4):193–201

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Author wish to thank Dr. Simona Lupsor, Faculty of Applied Sciences and Engineering for providing the chemicals necessary for experimentation.

Funding

Funding information is not applicable/no funding was received.

Author information

Authors and Affiliations

Authors

Contributions

FA designed, experimented, drafted, and wrote the article. FA is an Associate Professor of Microbiology, Faculty of Natural and Agricultural Sciences, Ovidius University of Constanta, Romania. He works mainly on the antimicrobial activity of natural and synthetic compounds against opportunistic and pathogenic bacteria and fungi.

Corresponding author

Correspondence to Florin Aonofriesei.

Ethics declarations

Competing interest

The author declares that he does not have any conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Communicated by Erko Stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aonofriesei, F. Effect of methylpyrazoles and coumarin association on the growth of Gram-negative bacteria. Arch Microbiol 204, 160 (2022). https://doi.org/10.1007/s00203-022-02773-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00203-022-02773-5

Keywords

Navigation