Skip to main content

Phylogeny of Graphostromatacea with two new species (Biscogniauxia glaucae sp. nov. and Graphostroma guizhouensis sp. nov.) and new record of Camillea broomeana isolated in China

Abstract

In the process of studying the diversity of Xylariales in China, three species owning characteristics of Graphostromataceae were observed in China. Morphology of the described species with illustrations and their phylogeny based on regions of internal transcribed spacers (ITS), the second-largest subunit of the RNA polymerase II (RPB2), β-tubulin (TUB2) and α-actin (ACT) are provided. Two new species and one new record from China are identified. Morphologically, Biscogniauxia glaucae sp. nov. differs from B. atropunctata var. maritima, B. citriformis var. macrospora, B. fuscella and B. mediterranea by its stromata with raised margins, clear outlines, punctate ostioles openings and ascospores which are equilateral with broadly rounded ends, a straight spore-length germ slit on the more concave side, lacking appendages and sheathes. Graphostroma guizhouensis is identified as a new species based on the multi-gene phylogenetic tree. Camillea broomeana with scanning electron microscope description of ascospores is illustrated as a new record from China. Cryptostroma is proposed in Graphostromataceae based on molecular data. Vivantia is accepted in Graphostromataceae based on its morphological characteristics and Nodulisporiurn anamorphs which are similar to those of Biscogniauxia.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Ariyawansa H, Hyde DK, Jayasiri S, Buyck B, Thilini Chethana KW, Dai DQ, Dai YC, Daranagama DA, Jayawardena RS, Lücking R, Ghobad-Nejhad M et al (2015) Fungal diversity notes 111–252—taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers 75(1):27–274. https://doi.org/10.1007/s13225-015-0346-5

    Article  Google Scholar 

  2. Barr ME, Rogers JD, Ju YM (1993) Revisionary studies in the calosphaeriales. Mycotaxon 48:529–535

    Google Scholar 

  3. Bills GF, Victor GM, Jesús M, Gonzalo P, Jacques F, Derek P, Stadler M, Maria-Jose F (2012) Hypoxylon pulicicidum sp. nov. (Ascomycota, Xylariales), a pantropical insecticide-producing endophyte. Plos One 7(10):e46687. https://doi.org/10.1371/journal.pone.0046687

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Carbone I, Kohn LM (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91:553–556. https://doi.org/10.2307/3761358

    CAS  Article  Google Scholar 

  5. Chomnunti P, Hongsanan S, Aguirre-Hudson B, Tian Q, Peršoh D, Dhami MK, Alisa AS, Xu JC, Liu XZ, Stadler M, Hyde KD (2014) The sooty moulds. Fungal Divers 66:1–36. https://doi.org/10.1007/s13225-014-0278-5

    Article  Google Scholar 

  6. Crous PW, Wingfield MJ, Schumacher RK, Akulov A, Bulgakov TS, Carnegie AJ, Jurjević Ž, Decock C, Denman S et al (2020) New and Interesting Fungi. 3. Fungal Syst Evol 6(1):157–231. https://doi.org/10.3114/fuse.2020.06.09

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Daranagama DA, Camporesi E, Tian Q, Liu XZ, Chamyuang S, Stadler M, Hyde KD (2015) Anthostomella is polyphyletic comprising several genera in Xylariaceae. Fungal Divers 73(1):203–238. https://doi.org/10.1007/s13225-015-0329-6

    Article  Google Scholar 

  8. Daranagama DA, Hyde KD, Sir EB, Thambugala K, Tian Q, Samarakoon MC, Mckenzie E, Jayasiri SC, Tibpromma S, Bhat DJ, Liu XZ, Stadler M (2018) Towards a natural classification and backbone tree for Graphostromataceae, Hypoxylaceae, Lopadostomataceae and Xylariaceae. Fungal Divers 88:1–165. https://doi.org/10.1007/s13225-017-0388-y

    Article  Google Scholar 

  9. Fries EM (1849) Summa vegetabilium scandinaviae. Part 2. Stockholm & Leipzig, Bonnier

    Google Scholar 

  10. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118. https://doi.org/10.1111/j1365-294X1993tb00005x

    CAS  Article  PubMed  Google Scholar 

  11. Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 61:1323–1330

    CAS  Article  Google Scholar 

  12. Gregory PH, Waller S (1951) Cryptostroma corticale and sooty bark disease of sycamore (Acer pseudoplatanus). Trans Br Mycol Soc 34:579

    Article  Google Scholar 

  13. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  14. Hsieh HM, Lin CR, Fang MJ, Rogers JD, Fournier J, Lechat C, Ju YM (2010) Phylogenetic status of Xylaria subgenus Pseudoxylaria among taxa of the subfamily Xylarioideae (Xylariaceae) and phylogeny of the taxa involved in the subfamily. Mol Phylogenet Evol 54:957–969. https://doi.org/10.1016/jympev200912015

    CAS  Article  PubMed  Google Scholar 

  15. Jaklitsch WM, Gardiennet VH (2016) Resolution of morphology-based taxonomic delusions: Acrocordiella, Basiseptospora, Blogiascospora, Clypeosphaeria, Hymenopleella, Lepteutypa, Pseudapiospora, Requienella, Seiridium and Strickeria. Persoonia 37:82–105. https://doi.org/10.3767/003158516X690475

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Jaklitsch WM, Voglmayr H (2012) Phylogenetic relationships of five genera of Xylariales and Rosasphaeria gen. nov. (Hypocreales). Fungal Divers 52(1):75–98. https://doi.org/10.1007/s13225-011-0104-2

    Article  Google Scholar 

  17. Jeewon R, Hyde KD (2016) Establishing species boundaries and new taxa among fungi: recommendations to resolve taxonomic ambiguities. Mycosphere 7(11):1669–1677. https://doi.org/10.5943/mycosphere/7/11/4

    Article  Google Scholar 

  18. Ju YM, Rogers JD (2001) New and interesting Biscogniauxia taxa, with a key to the world species. Mycol Res 105:1123–1133. https://doi.org/10.1016/s0953-7562(08)61976-0

    Article  Google Scholar 

  19. Ju YM, Rogers JD, San Martín F, Granmoi A (1998) The genus Biscogniauxia. Mycotaxon 66:1–98

    Google Scholar 

  20. Koukol O, Kelnarová I, Černý K (2015) Recent observations of sooty bark disease of sycamore maple in P rague (C zech R epublic) and the phylogenetic placement of Cryptostroma corticale. Forest Pathol 45:21–27. https://doi.org/10.1111/efp.12129

    Article  Google Scholar 

  21. Kuhnert E, Fournier J, Peršoh D, Luangsa-ard JJD, Stadler M (2013) New Hypoxylon species from Martinique and new evidence on the molecular phylogeny of Hypoxylon based on ITS rDNA and β-tubulin data. Fungal Divers 64:181–203. https://doi.org/10.1007/s13225-013-0264-3

    Article  Google Scholar 

  22. Kuo WH, Chen CY, Kuo CH, Goh TK (2018) Some ascomycetes from the alishan national scenic area, Chiayi County. Taiwan Nova Hedwigia 107:531–542. https://doi.org/10.1127/nova_hedwigia/2018/0490

    Article  Google Scholar 

  23. Læssøe T, Rogers JD, Whalley AJS (1989) Camillea, Jongiella and light spored species of Hypoxylon. Mycol Res 93(2):121–155. https://doi.org/10.1016/S0953-7562(89)80111-X

    Article  Google Scholar 

  24. Læssøe T, Scheuer S, Granmoi A (1999) Biscogniauxia granmoi (Xylariaceae) in Europe. Östen z Pilzk 8:139–147

    Google Scholar 

  25. Li QR, Wen TC, Kang JC, Hyde KD (2015) A new species of Collodiscula (Xylariaceae) from China. Phytotaxa 205:187–196. https://doi.org/10.11646/phytotaxa.205.3.6

    Article  Google Scholar 

  26. Liu YL, Whelen S, Hall BD (1999) Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. Mol Biol Evol 16:1799–1808. https://doi.org/10.1093/oxfordjournalsmolbeva026092

    CAS  Article  PubMed  Google Scholar 

  27. Liu LL, Long QD, Kang JC, Zhang X, Hyde KD, Shen XC, Li QR (2018) Morphology, and phylogeny of Mycopepon. Mycosphere 9:779–789. https://doi.org/10.5943/mycosphere/9/4/6

    Article  Google Scholar 

  28. Ma XY, Nontachaiyapoom S, Hyde KD, Jeewon R, Doilom M, Chomnunti P, Kang JC (2020) Biscogniauxia dendrobii sp. nov. and B. petrensis from Dendrobium orchids and the first report of cytotoxicity (towards A549 and K562) of B. petrensis (MFLUCC 14–0151) in vitro. S Afr J Bot 134:382–393. https://doi.org/10.1016/j.sajb.2020.06.022

    CAS  Article  Google Scholar 

  29. Malysheva EF, Malysheva VF, Kovalenko AE, Gromyko MN, Pimenova EA (2012) The participation of Biscogniauxia maritima (Xylariaceae, Ascomycota) in oak dieback revealed in the Sikhote-Alinsky Nature Reserve. Mikol Fitopatol 46:217–225

    Google Scholar 

  30. Mirabolfathy M, Ju YM, Hsieh HM, Roger JD (2013) Obolarina persica sp nov, associated with dying Quercus in Iran. Mycoscience 54:315–320. https://doi.org/10.1093/sysbio/sys029

    Article  Google Scholar 

  31. Montagne JFC (1855) Cryptogamia guyanensis. Ann Sci Nat 4 Ser Bot 3:91–144

    Google Scholar 

  32. Pažoutová S, Šrůtka P, Holuša J, Chudíčková M, Kolařík M (2010) The phylogenetic position of Obolarina dryophila (Xylariales). Mycol Prog 9:501–507. https://doi.org/10.1007/s11557-010-0658-5

    Article  Google Scholar 

  33. Pirozynski KA (1974) Xenotypa Petrak and Graphostroma gen. nov. segregates from Diatrypaceae. Can J Bot 52:2129–2135

    Article  Google Scholar 

  34. Pouzar Z (1979) Notes on taxonomy and nomenclature of Nummularia (Pyrenomycetes). Czech Mycol 33:207–219

    Google Scholar 

  35. Pouzar Z (1986) A key and conspectus of central European species of Biscogniauxia and Obalarina (Pyrenomycetes). Czech Mycol 40:11

    Google Scholar 

  36. Raimondo ML, Lops F, Carlucci A (2016) Charcoal canker of pear, plum, and quince trees caused by Biscogniauxia rosacearum sp nov in Southern Italy. Plant Dis 100:1813–1822. https://doi.org/10.1094/PDIS-09-15-1037-RE

    Article  PubMed  Google Scholar 

  37. Rannala B, Yang Z (1996) Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. J Mol Evol 43:304–311. https://doi.org/10.1007/BF02338839

    CAS  Article  PubMed  Google Scholar 

  38. Rogers JD, Ju YM, Candoussau F (1996) Biscogniauxia anceps comb. nov. and Vivantia guadalupensis gen. et sp. nov. Mycol Res 100:669–674. https://doi.org/10.1016/S0953-7562(96)80196-1

    Article  Google Scholar 

  39. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck J (2012) MrBayes 32: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542. https://doi.org/10.1093/sysbio/sys029

    Article  PubMed  PubMed Central  Google Scholar 

  40. Senanayake IC, Maharachchikumbura SSN, Hyde KD, Bhat JD, Jones EBG, McKenzie EHC, Dai DQ, Daranagama DA et al (2015) Towards unraveling relationships in Xylariomycetidae (Sordariomycetes). Fungal Divers 73:73–144. https://doi.org/10.1007/s13225-015-0340-y

    Article  Google Scholar 

  41. Smith GJ, Liew ECY, Hyde KD (2003) The Xylariales: a monophyletic order containing 7 families. Fungal Divers 13:175–208

    Google Scholar 

  42. Stadler M, Kuhnert E, Peroh D, Fournier J (2013) The Xylariaceae as model example for a unified nomenclature following the “One Fungus-One Name” (1F1N) concept. Mycology 4(1):5–21. https://doi.org/10.1080/21501203.2013.782478

    CAS  Article  Google Scholar 

  43. Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web servers. Syst Biol 75:758–771. https://doi.org/10.1080/10635150802429642

    Article  Google Scholar 

  44. Tulasne LR, Tulasne C (1863) Selecta fungorum. Carpologia 2:363

    Google Scholar 

  45. U’Ren JM, Miadlikowska J, Zimmerman NB, Lutzoni F (2016) Contributions of North American endophytes to the phylogeny, ecology, and taxonomy of Xylariaceae (Sordariomycetes, Ascomycota). Mol Phylogenet Evol 98:210–232. https://doi.org/10.1016/j.ympev.2016.02.010

    Article  PubMed  Google Scholar 

  46. Vasilyeva LN, Stephenson SL, Miller AN (2007) Pyrenomycetes of the great smoky mountains national park IV Biscogniauxia, Camaropella, Camarops, Camillea, Peridoxylon and Whalleya. Fungal Divers 25:219–231

    Google Scholar 

  47. Vasilyeva L, Li Y, Stephenson S (2009) Some pyrenomycetous fungi new to China. Mycotaxon 109:415–428. https://doi.org/10.5248/109415

    Article  Google Scholar 

  48. Voglmayr H, Beenken L (2020) Linosporopsis, a new leaf-inhabiting scolecosporous genus in Xylariaceae. Mycol Prog 19(3):205–222. https://doi.org/10.1007/s11557-020-01559-7

    Article  PubMed  PubMed Central  Google Scholar 

  49. Voglmayr H, Friebes G, Gardiennet A, Jaklitsch WM (2018) Barrmaelia and Entosordaria in Barrmaeliaceae (fam. nov. Xylariales) and critical notes on Anthostomella -like genera based on multigene phylogenies. Mycol Prog 17:155–177. https://doi.org/10.1007/s11557-017-1329-6

    Article  PubMed  Google Scholar 

  50. Vu D, Groenewald M, De Vries M, Gehrmann T, Stielow B, Eberhardt U, Al-Hatmi A, Groenewald JZ, Cardinali G, Houbraken J, Boekhout T, Crous PW, Robert V, Verkley GJM (2019) Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. Stud Mycol 92:135–154. https://doi.org/10.1016/jsimyco201805001

    CAS  Article  PubMed  Google Scholar 

  51. Wendt L, Sir EB, Kuhnert E, Heitkämper S, Lambert C, Hladki AI, Romero AI, Luangsa-ard JJ, Srikitikulchai P, Peršoh D, Stadler M (2018) Resurrection and emendation of the Hypoxylaceae, recognised from a multigene phylogeny of the Xylariales. Mycol Prog 17:115–154. https://doi.org/10.1007/s11557-017-1311-3

    Article  Google Scholar 

  52. White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics PCR protocols: a guide to methods and applications. Academic Press, San Diego, California, pp 315–322

    Google Scholar 

  53. Wijayawardene NN, Hyde KD, Al-Ani LKT, Tedersoo L, Haelewaters D, Rajeshkumar KC, Zhao RL, Aptroot A et al (2020) Outline of Fungi and fungi-like taxa. Mycosphere 11:1060–1456. https://doi.org/10.5943/mycosphere/11/1/8

    Article  Google Scholar 

  54. Zhang ZF, Liu F, Zhou X, Liu XZ, Liu SJ, Cai L (2017) Culturable mycobiota from Karst caves in China, with descriptions of 20 new species. Persoonia 39:1–31. https://doi.org/10.3767/persoonia20173901

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (31960005 and 32000009); the Fund of the Science and Technology Foundation of Guizhou Province ([2020]1Y059); Guizhou Province Ordinary Colleges and Universities Youth Science and Technology Talent Growth Project [2021]154; the Fund of Special Project of Academic New Seedling Cultivation and Innovation Exploration in Guizhou Medical University [2018]5779-64; International Science and Technology Cooperation Base of Guizhou Province ([2020]4101); Guizhou Scientific Plan Project ([2020]4Y220); the Open Fund Program of Engineering Research Center of Southwest Bio-Pharmaceutical Resources, Ministry of Education, Guizhou University No. GZUKEY201606.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jichuan Kang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Erko Stackebrandt.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 30 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Gong, X., Zhang, X. et al. Phylogeny of Graphostromatacea with two new species (Biscogniauxia glaucae sp. nov. and Graphostroma guizhouensis sp. nov.) and new record of Camillea broomeana isolated in China. Arch Microbiol (2021). https://doi.org/10.1007/s00203-021-02574-2

Download citation

Keywords

  • Two new species
  • Ascomycota
  • Polyphasic approach
  • Taxonomy