Skip to main content

Honey-based trap for Pseudomonas: a sustainable prototype for water disinfection

Abstract

This paper introduces a novel prototype for the removal of Pseudomonas from water samples. Bacterial cells have the tendency to get attracted towards specific chemicals (chemotaxis); a ‘honey-based trap’ (henceforth, addressed as ‘honey-trap’) strip was conceptualized by integrating a combination of serine, pseudomonas-specific chemoattractant and honey to attract and inhibit the bacteria in situ. Honey, a natural antimicrobial agent, has garnered the attention as an effective inhibitor for Pseudomonal biofilms and wound infections. Dipping serine side of the strip attracted bacteria towards honey-trap, whereby the porous nature of the strip facilitated the ‘trapping’ and subsequent diffusion of the bacterial cells towards honey-adsorbed end of the strip. This ‘honey-trap’ reportedly leads to the targeted elimination of Pseudomonas, hence facilitating its removal. The percentage efficacy of this ‘honey-trap’ device is 96% with a log reduction equivalent to 1.6 within a time frame of 2 h. Pseudomonas aeruginosa, although, not a natural contaminant of potable water, enters circulation due to improperly maintained plumbing fixtures and storage facilities. Honey-trap strip is an easy to use, biodegradable and cost-effective sustainable solution, and thus a scaled-up version of this device may enable substantial improvement in quality of potable water.

Graphic abstract

Schematics showing the preparation and working of the Pseudomonas Honey-trap. Serine as an attractant and honey as an inhibitor was absorbed on filter strips (HT) for use. The strip was dipped in culture from serine end. After different time period of incubation, difference in bacterial load was confirmed by measuring the electrical conductivity and OD600nm of the culture. Additionally, inhibitory effect of HS was confirmed by placing the strip incubated with culture on agar plates and differences in bacterial lawn were monitored. Removal of bacterial cells from the suspension was also confirmed using absorption spectroscopy.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3 

References

  1. Albaridi NA (2019) Antibacterial potency of honey. Int J Microbiol. https://doi.org/10.1155/2019/2464507

    Article  PubMed  PubMed Central  Google Scholar 

  2. Alhogail S, Suaifan GARY, Bikker FJ et al (2019) Rapid colorimetric detection of Pseudomonas aeruginosa in clinical isolates using a magnetic nanoparticle biosensor. ACS Omega 4:21684–21688. https://doi.org/10.1021/acsomega.9b02080

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Brick T, Primrose B, Chandrasekhar R et al (2004) Water contamination in urban south India: household storage practices and their implications for water safety and enteric infections. Int J Hyg Environ Health 207:473–480. https://doi.org/10.1078/1438-4639-00318

    Article  PubMed  Google Scholar 

  4. Brudzynski K, Sjaarda C (2014) Antibacterial compounds of Canadian honeys target bacterial cell wall inducing phenotype changes, growth inhibition and cell lysis that resemble action of β-lactam antibiotics. PLoS ONE 9:e10696. https://doi.org/10.1371/journal.pone.0106967

    CAS  Article  Google Scholar 

  5. Careaga M, Fernández E, Dorantes L et al (2003) Antibacterial activity of Capsicum extract against Salmonella typhimurium and Pseudomonas aeruginosa inoculated in raw beef meat. Int J Food Microbiol 83:331–335. https://doi.org/10.1016/S0168-1605(02)00382-3

    Article  PubMed  Google Scholar 

  6. Chen JW, Lau YY, Krishnan T et al (2018) Recent advances in molecular diagnosis of Pseudomonas aeruginosa infection by state-of-the-art genotyping techniques. Front Microbiol 9:1104. https://doi.org/10.3389/fmicb.2018.01104

    Article  PubMed  PubMed Central  Google Scholar 

  7. Combarros-Fuertes P, Estevinho LM, Teixeira-Santos R et al (2020) Antibacterial action mechanisms of honey: physiological effects of avocado, chestnut, and polyfloral honey upon Staphylococcus aureus and Escherichia coli. Molecules 25:1252. https://doi.org/10.3390/molecules25051252

    CAS  Article  PubMed Central  Google Scholar 

  8. Cooper RA, Halas E, Molan PC (2002) The efficacy of honey in inhibiting strains of Pseudomonas aeruginosa from infected burns. J Burn Care Rehabil 23:366–370. https://doi.org/10.1097/00004630-200211000-00002

    CAS  Article  PubMed  Google Scholar 

  9. Craven RC, Montie TC (1983) Chemotaxis of Pseudomonas aeruginosa: involvement of methylation. J Bacteriol 154:780–786. https://doi.org/10.1128/jb.154.2.780-786.1983

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Dasgupta S, Gunda NSK, Mitra SK (2016) Fishing, trapping and killing of: Escherichia coli (E. coli) in potable water. Environ Sci Water Res Technol 2:931–941. https://doi.org/10.1039/c6ew00200e

    CAS  Article  Google Scholar 

  11. Fitzgerald GP, DerVartanian ME (1969) Pseudomonas aeruginosa for the evaluation of swimming pool chlorination and algicides. Appl Microbiol 17:415–421. https://doi.org/10.1128/am.17.3.415-421.1969

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Galal-Gorchev H (1993) WHO guidelines for drinking-water quality. Water Supply 11:1–6

    CAS  Google Scholar 

  13. George S (1989) Effect of ampicillin-induced alterations in murine intestinal microbiota on the survival and competition of environmentally released pseudomonads. Fundam Appl Toxicol 13:670–680. https://doi.org/10.1016/0272-0590(89)90325-4

    CAS  Article  PubMed  Google Scholar 

  14. Gobelius L, Hedlund J, Dürig W et al (2018) Per- and polyfluoroalkyl substances in Swedish groundwater and surface water: implications for environmental quality standards and drinking water guidelines. Environ Sci Technol 52:4340–4349. https://doi.org/10.1021/acs.est.7b05718

    CAS  Article  PubMed  Google Scholar 

  15. Harris JO, Patty RE (1949) Conductivity studies of bacterial suspensions. J Bacteriol 57:67–71. https://doi.org/10.1128/jb.57.1.67-71.1949

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Héry-Arnaud G, Nowak E, Caillon J et al (2017) Evaluation of quantitative PCR for early diagnosis of Pseudomonas aeruginosa infection in cystic fibrosis: a prospective cohort study. Clin Microbiol Infect 23:203–207. https://doi.org/10.1016/j.cmi.2016.11.016

    CAS  Article  PubMed  Google Scholar 

  17. Jamshaid M, Khan AA, Ahmed K, Saleem M (2018) Heavy metal in drinking water its effect on human health and its treatment techniques—a review. Int J Biosci 12:223–240. https://doi.org/10.12692/ijb/12.4.223-240

    CAS  Article  Google Scholar 

  18. Kim M, Jung T, Kim Y et al (2015) A microfluidic device for label-free detection of Escherichia coli in drinking water using positive dielectrophoretic focusing, capturing, and impedance measurement. Biosens Bioelectron 74:1011–1015. https://doi.org/10.1016/j.bios.2015.07.059

    CAS  Article  PubMed  Google Scholar 

  19. Lee HH, Hong SI, Kim D (2014) Microbial reduction efficacy of various disinfection treatments on fresh-cut cabbage. Food Sci Nutr 2:585–590. https://doi.org/10.1002/fsn3.138

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Martínez-Tomé M, Jiménez-Monreal AM, García-Jiménez L et al (2011) Assessment of antimicrobial activity of coffee brewed in three different ways from different origins. Eur Food Res Technol 233:497–505. https://doi.org/10.1007/s00217-011-1539-0

    CAS  Article  Google Scholar 

  21. Mena KD, Gerba CP (2009) Risk assessment of Pseudomonas aeruginosa in water. Rev Environ Contam Toxicol 201:71–115. https://doi.org/10.1007/978-1-4419-0032-6_3

    CAS  Article  PubMed  Google Scholar 

  22. Moulton RC, Montie TC (1979) Chemotaxis by Pseudomonas aeruginosa. J Bacteriol 137:274–280. https://doi.org/10.1128/jb.137.1.274-280.1979

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Müller TH, Montag T, Seltsam AW (2011) Laboratory evaluation of the effectiveness of pathogen reduction procedures for bacteria. Transfus Med Hemother 38:242–250. https://doi.org/10.1159/000330338

    Article  PubMed  PubMed Central  Google Scholar 

  24. Negi PS, Jayaprakasha GK, Rao LJM, Sakariah KK (1999) Antibacterial activity of turmeric oil: a byproduct from curcumin manufacture. J Agric Food Chem 47:4297–4300. https://doi.org/10.1021/jf990308d

    CAS  Article  PubMed  Google Scholar 

  25. Pachori P, Gothalwal R, Gandhi P (2019) Emergence of antibiotic resistance Pseudomonas aeruginosa in intensive care unit; a critical review. Genes Dis 6:109–119. https://doi.org/10.1016/j.gendis.2019.04.001

    Article  PubMed  PubMed Central  Google Scholar 

  26. Peixoto JRO, Silva GC, Costa RA et al (2011) In vitro antibacterial effect of aqueous and ethanolic Moringa leaf extracts. Asian Pac J Trop Med 4:201–204. https://doi.org/10.1016/S1995-7645(11)60069-2

    Article  PubMed  Google Scholar 

  27. Pleeging CCF, Coenye T, Mossialos D et al (2020) Synergistic antimicrobial activity of supplemented medical-grade honey against Pseudomonas aeruginosa biofilm formation and eradication. Antibiotics 9:866. https://doi.org/10.3390/antibiotics9120866

    CAS  Article  PubMed Central  Google Scholar 

  28. Price D, Ahearn DG (1988) Incidence and persistence of Pseudomonas aeruginosa in whirlpools. J Clin Microbiol 26:1650–1654. https://doi.org/10.1128/jcm.26.9.1650-1654.1988

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Ramírez-Castillo FY, Loera-Muro A, Jacques M et al (2015) Waterborne pathogens: detection methods and challenges. Pathogens 4:307–334. https://doi.org/10.3390/pathogens4020307

    Article  PubMed  PubMed Central  Google Scholar 

  30. Rutala WA, Weber DJ (1997) Water as a reservoir of nosocomial pathogens. Infect Control Hosp Epidemiol 18:609–616. https://doi.org/10.2307/30141486

    CAS  Article  PubMed  Google Scholar 

  31. Schmidt J, Müsken M, Becker T et al (2011) The Pseudomonas aeruginosa chemotaxis methyltransferase CheR1 impacts on bacterial surface sampling. PLoS ONE 6:e18184. https://doi.org/10.1371/journal.pone.0018184

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Shenoy V, Ballal M, Shivananda PG, Bairy I (2012) Honey as an antimicrobial agent against Pseudomonas aeruginosa isolated from infected wounds. J Glob Infect Dis 4:102. https://doi.org/10.4103/0974-777X.96770

    Article  PubMed  PubMed Central  Google Scholar 

  33. Shibai A, Takahashi Y, Ishizawa Y et al (2017) Mutation accumulation under UV radiation in Escherichia coli. Sci Rep 7:1–12. https://doi.org/10.1038/s41598-017-15008-1

    CAS  Article  Google Scholar 

  34. Sourjik V, Wingreen NS (2012) Responding to chemical gradients: bacterial chemotaxis. Curr Opin Cell Biol 24:262–268. https://doi.org/10.1016/j.ceb.2011.11.008

    CAS  Article  PubMed  Google Scholar 

  35. Van Leeuwen FXR (2000) Safe drinking water: the toxicologist’s approach. Food Chem Toxicol 38:S51–S58. https://doi.org/10.1016/s0278-6915(99)00140-4

    Article  PubMed  Google Scholar 

  36. Wilkinson JM, Cavanagh HMA (2005) Antibacterial activity of 13 honeys against Escherichia coli and Pseudomonas aeruginosa. J Med Food 8:100–103. https://doi.org/10.1089/jmf.2005.8.100

    CAS  Article  PubMed  Google Scholar 

  37. Yang Y, Pollard AM, Höfler C et al (2015) Relation between chemotaxis and consumption of amino acids in bacteria. Mol Microbiol 96:1272–1282. https://doi.org/10.1111/mmi.13006

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Young WF, Horth H, Crane R et al (1996) Taste and odour threshold concentrations of potential potable water contaminants. Water Res 30:331–340. https://doi.org/10.1016/0043-1354(95)00173-5

    CAS  Article  Google Scholar 

  39. Žukovskaja O, Jahn IJ, Weber K et al (2017) Detection of Pseudomonas aeruginosa metabolite pyocyanin in water and saliva by employing the SERS technique. Sensors (switzerland) 17:1074. https://doi.org/10.3390/s17081704

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank Mr. Bhupesh Sharma, Scientific officer, MRC, MNIT, Jaipur for his technical assistance in acquiring scanning electron microscopy images. Authors acknowledge Dr. Deepshikha Rathore for proofreading the document.

Funding

The work received no funding from any authority.

Author information

Affiliations

Authors

Contributions

MD conceived the idea; HR and PP performed the experimental work; MD, DP and HR contributed to writing of the manuscript, HR and PP prepared figures and/or tables. MD and DP reviewed and approved the final draft.

Corresponding author

Correspondence to Manali Datta.

Ethics declarations

Conflict of interest

The authors declare no competing interest from any source.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Erko Stackebrandt.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ranade, H., Paliwal, P., Pal, D. et al. Honey-based trap for Pseudomonas: a sustainable prototype for water disinfection. Arch Microbiol (2021). https://doi.org/10.1007/s00203-021-02568-0

Download citation

Keywords

  • Chemoattractant
  • Honey
  • Inhibition
  • Pseudomonas
  • Water treatment