Skip to main content

An assessment of the air quality in apple warehouses: new records of Aspergillus europaeus, Aspergillus pulverulentus, Penicillium allii and Penicillium sumatraense as decay agents

Abstract

Airborne fungi are one of the major components of aeromycobiota known to produce several fungal diseases in fruits. Their presence in indoor environment of warehouses may limit the storage period of apples. Qualitative and quantitative analyses of airborne fungal spores were conducted using gravity settling techniques to detect fungal airspora present in the atmosphere of two apple warehouses in Tunisia. In this study, 375 fungal isolates were obtained and purified. Phylogenetic analysis of calmodulin, beta-tubulin and ITS regions coupled with phenotypic characterization helped to identify 15 fungal species. Penicillium exhibited the highest diversity with ten species detected (Penicillium allii, P. chrysogenum, P. citrinum, P. expansum, P. italicum, P. polonicum, P. solitum, P. steckii, P. sumatraense and P. viridicatum), followed by four species of Aspergillus genus (Aspergillus europaeus, A. flavus, A. niger and A. pulverulentus) and Alternaria alternata. In vivo experiments confirmed the pathogenicity of 13 species at room temperature and under cold-storage conditions. Among them, A. europaeus, A. pulverulentus, P. allii and P. sumatraense were described for the first time as pathogens on apples. The present study identified the major airborne fungi associated with postharvest rot in apple storage facilities in Tunisia and may help in efficient control of postharvest and storage fruit diseases.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Availability of data and material

All data generated or analyzed during this study are included in this published article.

References

  1. Agriopoulou S, Stamatelopoulou E, Varzakas T (2020) Advances in occurrence, importance, and mycotoxin control strategies: prevention and detoxification in foods. Foods 9:137

    CAS  PubMed Central  Article  Google Scholar 

  2. Allen J (2009) Garlic production factsheet. Ontario Ministry of Agriculture, Food and Rural Affairs, order no. 09-011W AGDEX 258/13, 8

  3. Altunatmaz SS, Issa G, Aydin A (2012) Detection of airborne psychrotrophic bacteria and fungi in food storage refrigerators. Braz J Microbiol 43:1436–1443

    PubMed  PubMed Central  Article  Google Scholar 

  4. Alwakeel SS (2013) Molecular identification of isolated fungi from stored apples in Riyadh, Saudi Arabia. Saudi J Biol Sci 20:311–317

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. Amiri A, Bompeix G (2005) Diversity and population dynamics of Penicillium spp. on apples in pre- and postharvest environments: consequences for decay development. Plant Pathol 54(1):74–81

    Article  Google Scholar 

  6. Amiri A, Cholodowski D, Bompeix G (2005) Adhesion and germination of waterborne and airborne conidia of Penicillium expansum to apple and inert surfaces. Physiol Mol Plant Pathol 67(1):40–48

    CAS  Article  Google Scholar 

  7. Arya C, Arya A (2007) Aeromycoflora of fruit markets of Baroda, India and associated diseases of certain fruits. Aerobiologia 23:283–289

    Article  Google Scholar 

  8. Azam M, Shahid AA, Majeed RA, Ali M, Ahmad N, Haider MS (2016) First report of Penicillium biourgeianum causing post-harvest fruit rot of apple in Pakistan. Plant Dis 100:1778

    Article  Google Scholar 

  9. Bahri BA, Belaid Y, Mechichi G, Rouissi W (2019) Diversity of pathogenic fungi associated with apples in cold storage facilities in Tunisia. J Am Pomol Soc 73:62–75

    Google Scholar 

  10. Barontini M, Crognale S, Scarfone A, Gallo P, Gallucci F, Petruccioli M et al (2014) Airborne fungi in biofuel wood chip storage sites. Int Biodeterior Biodegradation 20:17–22

    Article  CAS  Google Scholar 

  11. Bock CH, Mackey B, Cotty PJ (2004) Population dynamics of Aspergillus flavus in the air of an intensively cultivated region of south-west Arizona. Plant Pathol 53:422–433

    Article  Google Scholar 

  12. Cavagnaro PF, Camargo A, Piccolo RJ, Garcia Lampasona S, Burba JL, Masuelli RW (2005) Resistance to Penicillium hirsutum Dierckx in garlic accessions. Eur J Plant Pathol 112:195–199

    Article  Google Scholar 

  13. da Rocha Neto AC, Luiz C, Maraschin M, Di Piero RM (2016) Efficacy of salicylic acid to reduce Penicillium expansum inoculum and preserve apple fruits. Int J Food Microbiol 221:54–60

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  14. Darolt JC, Rocha Neto AC, Di Piero RM (2016) Effects of the protective, curative, and eradicative applications of chitosan against Penicillium expansum in apples. Braz J Microbiol 47(4):1014–1019

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. Despot DJ, Klaric MS (2014) A year-round investigation of indoor airborne fungi in Croatia. Arch Ind Hyg Toxicol 65:209–218

    Google Scholar 

  16. Dhruv S, Dutta B, Singh A (2010) Exposure to indoor fungi in different working environments: a comparative study. Aerobiologia 26:327–337

    Article  Google Scholar 

  17. Duduk N, Vasić M, Vico I (2014) First report of Penicillium polonicum causing blue mold on stored onion (Allium cepa) in Serbia. Plant Dis 98:1440

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. Dugan F (2006) The Identification of Fungi: An Illustrated Introduction With key, Glossary and Guide to Literature. APS Publication, St. Paul, MN

    Google Scholar 

  19. Dugan FM, Hellier BC, Lupien SL (2007) Pathogenic fungi in garlic seed cloves from the United States and China, and efficacy of fungicides against pathogens in garlic germplasm in Washington state. J Phytopathol 155:437–445

    CAS  Article  Google Scholar 

  20. Dugan FM, Hellier BC, Lupien SL (2011) Resistance to Penicillium allii in accessions from a national plant germplasm system allium collection. Crop Prot 30:483–488

    Article  Google Scholar 

  21. Eltem R, Aþkun T, Sarig N, Zkale Taþkin E, Efendüler H (2004) Colonial and morphological characteristics of some Aspergillus Fr.:Fr. Species isolated from vineyards in Manisa and Üzmir provinces (Turkey). Turk J Bot 28:287–298

    Google Scholar 

  22. Faedda R, Pane A, Cacciola SO, Granata G, Salafia L, Sinatra F (2015) Penicillium polonicum causing a postharvest soft rot of cactus pear fruits. Acta Hortic 1067:193–197

    Article  Google Scholar 

  23. Fernández-Cruz ML, Mansilla ML, Tadeo JL (2010) Mycotoxins in fruits and their processed products: analysis, occurrence and health implications. J Adv Res 1:113–122

    Article  Google Scholar 

  24. Filtenborg O, Frisvald JC, Thrane U (1996) Moulds in food spoilage. Int J Food Microbiol 33:85–102

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. Di Francesco A, Cameldi I, Neri F, Barbanti L, Folchi A, Spadoni A, Baraldi E (2019) Effect of apple cultivars and storage periods on the virulence of Neofabraea spp. Plant Pathol 68:1525–1532

    Article  CAS  Google Scholar 

  26. Frisvad JC, Samson RA (2004) Polyphasic taxonomy of Penicillium subgenus Penicillium. A guide to identification of food and air-borne terverticillate Penicillia and their mycotoxins. Stud Mycol 49:1–174

    Google Scholar 

  27. Gara A, Abdelhafidh H, Hammemi M, Aloui M (2019) Analysis of the apple value chain at Sbiba region, Tunisia. J New Sci Agric Biotechnol 63:3972–3988

    Google Scholar 

  28. Gautam AK, Sharma S, Avasthi S, Bhadauria R (2011) Diversity, pathogenicity and toxicology of A. niger: An important spoilage fungi. Res J Microbiol 6:270–280

    Article  Google Scholar 

  29. GIFRUITS 2018 Pommes actualités. http://gifruits.com/?p=2053&lang=fr. Accessed 2 Oct 2020

  30. Giraud M, Fauré J (2000) Assessment of Penicillium risk on pome fruit in storage. In: Proceedings of the 5th workshop on integrated control of pome fruit diseases, Fontevraud (France), pp 24–27

  31. Gong D, Bi Y, Li Y, Zong Y, Han Y, Prusky D (2019) Both Penicillium expansum and Trichothecim roseum infections promote the ripening of apples and release specific volatile compounds. Front Plant Sci 10:338

    PubMed  PubMed Central  Article  Google Scholar 

  32. Grantina-Ievina L (2015) Fungi causing storage rot of apple fruit in integrated pest management system and their sensitivity to fungicides. Rural Sustain Res 34(329):1–10

    Google Scholar 

  33. Grisoli P, Rodolfi M, Villani S, Grignani E, Cottica D, Berri A, Dacarro C (2009) Assessment of airborne microorganism contamination in an industrial area characterized by an open composting facility and a wastewater treatment. J Plant Environ Res 109:135–142

    CAS  Google Scholar 

  34. Hasan H (2000a) Patulin and aflatoxin in brown rot lesion of apple fruits and their regulation. World J Microbiol Biotechnol 16:607–612

    CAS  Article  Google Scholar 

  35. Hasan H (2000b) Patulin and aflatoxin in brown rot lesion of apple fruits and their regulation. World J Microbiol Biotechnol 16(7):607–612

    CAS  Article  Google Scholar 

  36. Holtmeyer MG, Wailin JR (1980) Identification of aflatoxin producing atmospheric isolates of Aspergillus flavus. Phytopathology 70:325–327

    Article  Google Scholar 

  37. Houbraken J, Frisvad J, Samson R (2011) Taxonomy of Penicillium section citrina. Stud Mycol 70:53–138

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. Houbraken J, Samson RA (2011) Phylogeny of Penicillium and the segregation of Trichocomaceae into three families. Stud Mycol 70:1–51

  39. Hubka V, Nováková A, Samson RA, Houbraken J, Frisvad JC, Sklenář Ek, Varga J, Kolařík M (2016) Aspergillus europaeus sp. nov., a widely distributed soil-borne species related to A. wentii (section Cremei). Plant Syst Evol 302:641–650

    CAS  Article  Google Scholar 

  40. Iqbal HM, Yousaf S, Khurshid S, Akbar QUA, Arif S, Fatima N, Rahoo AM (2019) Postharvest Physiological Disorders and organoleptic properties in relation to fungal disease incidence in citrus. J Innov Sci 5(1):6–11

    CAS  Google Scholar 

  41. Jean Phellipe MN, Ana MQL, Mykaella AA, Lucas AA, Eurípedes ASF (2019) Airborne fungi in indoor hospital environments. Int J Curr Microbiol App Sci 8(1):2749–2772

    Article  CAS  Google Scholar 

  42. Johnston C (2008) Identification of Penicillium species in South African litchi export Chain. MSc thesis, University of Pretoria, Pretoria, South Africa

  43. Jurick WM II, Kou LP, Gaskins VL, Luo YG (2014) First Report of Alternaria alternata causing postharvest decay on apple fruit during cold storage in Pennsylvania. Plant Dis 98(5):690–690

    PubMed  Article  PubMed Central  Google Scholar 

  44. Kakde UB, Kakde HU (2012) Incidence of post-harvest disease and airborne fungal spores in a vegetable market. Acta Bot Croat 71(1):147–157

    Article  Google Scholar 

  45. Khan AAH, Karuppayil SM (2012) Fungal pollution of indoor environments and its management. Saudi J Biol Sci 19:405–426

    CAS  Article  Google Scholar 

  46. Kibret M, Abera B (2012) The sanitary conditions of food service establishments and food safety knowledge and practices of food handlers in Bahir Dar Town. Ethiop J Health Sci 22(1):27–35

    PubMed  PubMed Central  Google Scholar 

  47. Kim WK, Hwang YS, Yu SH (2008) Two species of penicillium associated with blue mold of yam in Korea. Mycobiology 36:217–221

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. Kozdrój J, Frączek K, Ropek D (2019) Assessment of bioaerosols in indoor air of glasshouses located in a botanical garden. Build Environ 166:106436

    Article  Google Scholar 

  49. Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. Lehtonen M, Reponen T (1993) Everyday activities and variation of fungal spore concentration in indoor air. Int J Biodeterior Biodegrad 31:25–39

    Article  Google Scholar 

  51. Li Y, Aldwinckle HS, Sutton T, Tsuge T, Kang G, Cong PH, Cheng ZM (2012) Interactions of apple and the Alternaria alternata apple pathotype. Crit Rev Plant Sci 32:141–150

    Article  Google Scholar 

  52. Liu D, Coloe S, Baird R, Pederson J (2000) Rapid mini-preparation of fungal DNA for PCR. J Clin Microbiol 38(1):471

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. Liu CQ, Hu KD, Li TT, Yang Y, Yang F, Li YH, Al E (2017) Polygalacturonase gene pgxB in Aspergillus niger is a virulence factor in apple fruit. PLoS ONE 12:e0173277

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  54. Louw JP, Korsten L (2014) Pathogenic Penicillium spp. on apple and pear. Plant Dis 98(5):590–598

    PubMed  Article  PubMed Central  Google Scholar 

  55. Lucas GB, Campbell C, Lucas LT (1992) Diseases caused by airborne fungi. Introduction to plant diseases. Springer, Boston, MA

    Book  Google Scholar 

  56. Mahdian S, Zafari D (2016) First report of table grape blue mold caused by Penicillium sumatrense in Iran. Plant Dis 101

  57. Malmstrøm J, Christophersen C, Frisvad JC (2000) Secondary metabolites characteristic of Penicillium citrinum, Penicillium steckii and related species. Phytochemistry 54:301–309

  58. Mari M, Guidarelli M, Martini C et al (2012) First report of Colletotrichum acutatum causing bitter rot on apple in Italy. Plant Dis 96:144

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  59. Money NP (2015) Spore production, discharge and dispersal. Academic Press, London

    Google Scholar 

  60. Moubasher AH, Ismail MA, Hussein NA, Gouda HA (2015) Osmophilic/osmotolerant and halophilic/halotolerant mycobiota of soil of Wadi El-Natrun regions. J Basic Appl Mycol 6:27–42

    Google Scholar 

  61. Nabi SU, Raja WH, Kumawat KL, Mir JI, Sharma OC, Singh DB, Sheikh MA (2017) Post harvest diseases of temperate fruits and their management strategies-a review. Indian J Pure Appl Biosci 5(3):885–898

    Article  Google Scholar 

  62. Nguyen TTT, Pangging M, Bangash NK, Lee HB (2020) Five new records of the family Aspergillaceae in Korea, Aspergillus europaeus, A. pragensis, A. tennesseensis, Penicillium fluviserpens, and P. scabrosum. Mycobiology 48:81–94

    PubMed  PubMed Central  Article  Google Scholar 

  63. Nova WP, Andika S, Latifah Z, Darmadji P, Endang R (2015) Airborne fungi and aflatoxin-producing Aspergillus flavus group on gaplek (dried cassava) storage warehouse in Gunung Kidul, Yogyakarta, Indonesia. Asian J Microbiol Biotechnol Environ Sci 17:785–798

    Google Scholar 

  64. O’gorman CM, Fuller HT (2008) Prevalence of culturable airborne spores of selected allergenic and pathogenic fungi in outdoor air. Atmos Environ 42:4355–4368

    Article  CAS  Google Scholar 

  65. Oliveri C, Campisano A, Catara A, Cirvilleri G (2007) Characterization and faflp genotyping of Penicillium strains from postharvest samples and packing house environments. J Plant Pathol 89(1):29–40

    CAS  Google Scholar 

  66. Peterson SW (2000) Phylogenetic analysis of Penicillium species based on ITS and LSU-rDNA nucleotide sequences. In: Samson RA, Pitt JI (eds) Integration of modern taxonomic methods for Penicillium and Aspergillus classification Plenum Press, New York, pp 163–178

  67. Peter KA, Vico I, Gaskins V, Janisiewicz WJ, Saftner RA, Jurick Ii WM (2012) First report of Penicillium carneum causing blue mold on stored apples in Pennsylvania. Plant Dis 96:1823–1823

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  68. Pitt JI, Samson RA, Frisvad JC (2000) List of accepted species and their synonyms in the family Trichocomaceae. In: Samson RA, Pitt JI (eds) Integration of modern methods for Penicillium and Aspergillus classification. Harwood Academic Publishers, Amsterdam, pp 9–49

  69. Rharmitt S, Hafidi M, Hajjaj H, Scordino F, Giosa D, Giuffre L et al (2016) Molecular characterization of patulin producing and non-producing Penicillium species in apples from Morocco. Int J Food Microbiol 217:137–140

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  70. Richardson MD (1998) Topley & Wisons`s microbiology and microbial infections medical mycology. Arnold, London

    Google Scholar 

  71. Romanazzi G, Feliziani E (2014) Botrytis cinerea (Gray Mold). Elsevier, London

    Book  Google Scholar 

  72. Rotem J (1994) The genus Alternaria: biology, epidemiology and pathogenicity. The American Phytopathological Society, St. Paul, p 326

    Google Scholar 

  73. Samson RA, Visagie CM, Houbraken J, Hong SB, Hubka V, Klaassen CHW et al (2014) Phylogeny, identification and nomenclature of the genus Aspergillus. Stud Mycol 78:141–173

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. Sawane AM, Saoji AA (2005) Airborne Penicillium in the grain shops of Nagpur (India). Grana 44:123–128

    Article  Google Scholar 

  75. Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA et al (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proc Natl Acad Sci USA 109:6241–6246

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  76. Scholtz I, Korsten L (2016) Profile of Penicillium species in the pear supply chain. Plant Pathol 65:1126–1132

    Article  Google Scholar 

  77. Schuster E, Dunn-Coleman N, Frisvad J, Van Dijck P (2002) On the safety of Aspergillus niger—a review. Appl Microbiol Biotechnol 59:426–435

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  78. Serra R, Peterson SW, CTCOR, Venâncio A (2008) Multilocus sequence identification of Penicillium species in cork bark during plank preparation for the manufacture of stoppers. Res Microbiol 159:178–186

  79. Sharma RR, Singh D, Singh R (2009) Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: a review. Biol Control 50:205–222

    Article  Google Scholar 

  80. Shelton B, Kirkland K, Flanders W, Morris G (2002) Profiles of airborne fungi in buildings and outdoor environments in the United States. Appl Environ Microbiol 68:1743–1753

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  81. Sholberg PL, Harlton C, Haag P, Levesque CA, O’Gorman D, Seifert K (2005) Benzimidazole and diphenylamine sensitivity and identity of Penicillium spp. that cause postharvest blue mold of apples using β-tubulin gene sequences. Postharvest Biol Technol 36:41–94

    CAS  Article  Google Scholar 

  82. Shtienberg D (2012) Effects of host physiology on the development of core rot, caused by Alternaria alternate, in red delicious apples. Phytopathology 102(8):769–778

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  83. Şimşekli Y, Gücin F, Asan A (1999) Isolation and identification of indoor airborne fungal contaminants of food production facilities and warehouses in Bursa, Turkey. Aerobiologia 15:225–231

    Article  Google Scholar 

  84. Singh BK, Yadav KS, Verma A (2017) Impact of postharvest diseases and their management in fruit crops: an overview. J Bio Innov 6(5):749–760

    CAS  Google Scholar 

  85. Spadaro D, Dianpeng Z, Garibaldi A, Gullino ML (2010) Effect of culture media and pH on the biomass production and biocontrol efficacy of a Metschnikowia pulcherrima strain to be used as a biofungicide for postharvest disease control. Can J Microbiol 56:128–137

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  86. Spadaro D, Lorè A, Amatulli MT, Garibaldi A, Gullino ML (2011) First report of Penicillium griseofulvum causing blue mold on stored apples in Italy (Piedmont). Plant Dis 95:76

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  87. Spotts RA, Cervantes LA, Mielke EA (1999) Variability in postharvest decay among apple cultivars. Plant Dis 83:1051–1054

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  88. Sutton TB (2014) Bitter rot. The American Phytopathological Society, Paul

    Google Scholar 

  89. Thom C (1926) The genus Aspergillus

  90. Tiwari K, Jadhav S, Kumar A (2011) Morphological and molecular study of different Penicillium species. Middle-East J Sci Res 7:203–210

    Google Scholar 

  91. Valdez JG, Makuch MA, Ordovini AF, Masuelli RW, Overy DP, Piccolo RJ (2006) First report of Penicillium allii as a field pathogen of garlic (Allium sativum). Plant Pathol 55:583

    Article  Google Scholar 

  92. Valdez JG, Makuch MA, Ordovini AF, Frisvad JC, Overy DP, Masuelli RW, Piccolo RJ (2009) Identification, pathogenicity and distribution of Penicillium spp. isolated from garlic in two regions in Argentina. Plant Pathol 58:352–361

    Article  Google Scholar 

  93. Vermani M, Bedi N, Hussain MS (2014) Prevalence of culturable airborne fungi in fruit markets of Delhi and Noida, India. Int Res J Environ Sci 3(7):1–6

    CAS  Google Scholar 

  94. Vico I, Duduk N, Vasić M, Nikolić M (2014a) Identification of Penicillium expansum causing postharvest blue mold decay of apple. J Pesticides Phytomed 29(4):257–266

    Article  Google Scholar 

  95. Vico I, Gaskins V, Duduk N, Vasić M, Yu JJ, Peter KA, Jurick Ii WM (2014b) First report of Penicillium crustosum causing blue mold on stored apple fruit in Serbia. Plant Dis 98:1430–1430

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  96. Víctor G, Cesar G, David B, Damaris O (2014) Complete control of Penicillium expansum on apple fruit using a combination of antagonistic yeast Candida oleophila. Chile J Agric Res 74(4):427–431

    Article  Google Scholar 

  97. Vincent MA, Pitt JI (1989) Penicillium Allii a new species from Egyptian garlic. Mycologia 81:300–303

    Google Scholar 

  98. Visagie CM, Houbraken J, Frisvad JC, Hong SB, Klaassen CH, Perrone G et al (2014) Identification and nomenclature of the genus Penicillium. Stud Mycol 78:343–371

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  99. Wenneker M, Thomma BPHJ (2020) Latent postharvest pathogens of pome fruit and their management: from single measures to a systems intervention approach. Eur J Plant Pathol 156:663–681

    Article  Google Scholar 

  100. White T, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA Genes for phylogenetics. In: PCR—protocols and applications—a laboratory manual. Academic Press, Cambridge

  101. Woudenberg JHC, Van Der Merwe NA, Jurjević Ž, Groenewald JZ, Crous PW (2015) Diversity and movement of indoor Alternaria alternata across the mainland USA. Fungal Genet Biol 81:62–72

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  102. Ye SY, Song XL, Liang JL, Zheng SH, Lin Y (2012) Disinfection of airborne spores of Penicillium expansum in cold storage using continuous direct current corona discharge. Biosys Eng 113(2):112–119

    Article  Google Scholar 

  103. Yu J, Jurick WM II, Cao H, Yin Y, Gaskins VL, Losada L et al (2014) Draft genome sequence of Penicillium expansum strain R19, which causes postharvest decay of apple fruit. Genome Announc 2(3):e00635

    PubMed  PubMed Central  Article  Google Scholar 

  104. Zhang MK, Tang J, Huang ZQ, Hu KD, Li YH, Han Z, Chen XY, Hu LY, Yao GF, Zhang H (2018) Reduction of Aspergillus niger virulence in apple fruits by deletion of the catalase gene cpeB. J Agric Food Chem 66:401–5409

    Google Scholar 

  105. Zhang S, Zheng Q, Xu B, Liu J (2019) Identification of the fungal pathogens of postharvest disease on peach fruits and the control mechanisms of Bacillus subtilis JK-14. Toxins 11(6):322

    CAS  PubMed Central  Article  Google Scholar 

  106. Zhu L, Ni W, Liu S, Cai B, Xing H, Wang S (2017) Transcriptomics analysis of apple leaves in response to Alternaria alternata apple pathotype infection. Front Plant Sci 8:22

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by funds from the VRR Project (no. 0310) and by the Ministry of Higher Education and Scientific Research of Tunisia (LR16ES05).

Funding

This study was funded by Ministry of Higher Education and Scientific Research of Tunisia (LR16ES05) and by funds from the Project of Valorization of Results (VRR no. 0310).

Author information

Affiliations

Authors

Contributions

Marwa SMIRI carried out the experiment and wrote the manuscript with support from Najla SADFI, Eduardo Antonio Espeso and Mustapha Rouissi and Mohamed Zouaoui. Najla SADFI supervised the Project. Amina Kheireddine helped in sampling. Eduardo Antonio Espeso contributed to molecular analysis. All the authors read and approved the manuscript.

Corresponding author

Correspondence to Najla Sadfi-Zouaoui.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

All the authors consent to this submission.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Olaf Kniemeyer.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 435 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Smiri, M., Kheireddine, A., Hammami, R. et al. An assessment of the air quality in apple warehouses: new records of Aspergillus europaeus, Aspergillus pulverulentus, Penicillium allii and Penicillium sumatraense as decay agents. Arch Microbiol (2021). https://doi.org/10.1007/s00203-021-02551-9

Download citation

Keywords

  • Postharvest disease
  • Cold rooms
  • Pathogenicity
  • Airspora
  • Fungi