Skip to main content

Advertisement

Log in

Prospecting catabolic diversity of microbial strains for developing microbial consortia and their synergistic effect on Lentil (Lens esculenta) growth, yield and iron biofortification

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Carbon profiling of heterotrophic microbial inoculants is worthwhile strategy for formulating consortium-based biofertilizers. Consortium-based biofertilizers are better than single strain-based biofertilizers for sustaining agricultural productivity and enhancing micronutrient concentration in grains. Currently, we investigated catabolic diversity among microbes using different carbon sources and certain enzyme activities. A field experiment was also carried to evaluate the synergistic effect of selected lentil Rhizobia and plant growth promoting rhizobacteria strains on lentil growth, yield, nitrogen fixation, and Fe-content in seeds. On the basis of carbon profiling Bacillus sp. RB1 and Pseudomonas sp. RP1 were selected for synergistic study with lentil Rhizobium-Rhizobium leguminosarum subsp. viciae RR1. Co-inoculation of Rhizobium with Bacillus sp. RB1 and Pseudomonas sp. RP1 significantly enhanced the plant height, number of pods per plant, seed yield, number of nodules per plant, nitrogenase activity and Fe biofortification in seed over the single Rhizobium inoculation or dual combination of Rhizobium + RB1 or RP1.The response of single Rhizobium inoculation or co-inoculation of Rhizobium with RB1 and/or RP1 at 50% RDF was almost similar or higher than full dose of recommended N:P:K with respect to lentil yield and Fe biofortification in seed. This deciphered grouping of microbial strains for formulation of microbial consortia-based biofertilizers and revealed the promise of consortium of Rhizobium and plant growth promoting rhizobacteria in improving the biological yield and enhancing the Fe content of lentil seed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ajouri A, Asgedom H, Becker M (2004) Seed priming enhances germination and seedling growth of barley under conditions of P and Zn deficiency. J Plant Nutr and Soil Sci 167:630–636

    Article  Google Scholar 

  • Akçin A (1988) Yemeklik dane baklagiller ders kitabı, Selçuk Üni. Zir. Fak. Yayınları, Konya, pp 43–48

    Google Scholar 

  • Alagawadi AR, Gaur AC (1988) Associative effect of Rhizobium and phosphate solubilizing bacteria on the yield and nutrient uptake of chickpea. Plant Soil 105:241–246

    Article  Google Scholar 

  • Araújo F, Sérgio A, Figueiredo MVB (2009) Role of plant growth-promoting bacteria in sustainable agriculture. In: Salazar A, Rios I (eds) Sustainable agriculture: technology, planning. Nova Science Publishers, Hauppauge, pp 267–289

    Google Scholar 

  • Bai Y, Zhou-Xiao M, Smith DL (2003) Enhanced soybean plant growth resulting from coinoculation of Bacillus strains with Bradyrhizobium japonicum. Crop Sci 43:1774–1781. https://doi.org/10.2135/cropsci2003.1774

    Article  Google Scholar 

  • Bashir K, Ali S, Umair A (2011) Effect of different phosphorus levels on xylem sap components and their correlation with growth variables of mash bean. Sarhad J Agric 27:1–6

    Google Scholar 

  • Biswas PK, Bhowmick MK, Malik GC, Banerjee M, Ghosh GK, Mitra SR (2012) Synergistic effect of Rhizobium inoculation with co-inoculants on growth and yield of lentil (Lens culinaris Medikus). Int J Bio-Resour Stress Manag 3(1):44–47

    Google Scholar 

  • Bullis DT, Grandlic CJ, McCann RT, Kerovuo JS (2017) Plant growth-promoting microbes and uses therefor. U.S. Patent No. 9,687,000. Washington, DC: U.S. Patent and Trademark Office.

  • Cabeza RA, Liese R, Lingner A, von Stieglitz I, Neumann J, Salinas-Riester G, Pommerenke C, Dittert K, Schulze J (2014) RNA-seq transcriptome profiling reveals that Medicago truncatula nodules acclimate N 2 fixation before emerging P deficiency reaches the nodules. J Exp Bot 65(20):6035–6048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carpenter SR (2005) Eutrophication of aquatic ecosystems: bistability and soil phosphorus. Proc Natl Acad Sci USA 102:10002–10005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castric PA (1975) Hydrogen cyanide, a secondary metabolite of Pseudomonas aeruginosa. Can J Microbiol 21:613–618

    Article  CAS  PubMed  Google Scholar 

  • Chandra R, Pareek RP (2002) Effect of Rhizobacteria in urd bean and lentil. Indian J Pulses Res 15(2):152–155

    Google Scholar 

  • Chen WW, Yang JL, Qin C, Jin CW, Mo JH, Ye T, Zheng SJ (2010) Nitric oxide acts downstream of auxin to trigger root ferric-chelate reductase activity in response to iron deficiency in Arabidopsis. Plant Physiol 154(2):810–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen B, Zhang Y, Rafiq MT, Khan KY, Pan F, Yang X, Feng Y (2014) Improvement of cadmium uptake and accumulation in Sedum alfredii by endophytic bacteria Sphingomonas SaMR12: effects on plant growth and root exudates. Chemosphere 117:367–373

    Article  CAS  PubMed  Google Scholar 

  • Cooke GW (1982) Fertilizing for maximum yield, 3rd edn. Collins, p 457

    Google Scholar 

  • da Silva LL, Olivares FL, De Oliveira RR, Vega MRG, Aguiar NO, Canellas LP (2014) Root exudate profiling of maize seedlings inoculated with Herbaspirillum seropedicae and humic acids. Chem Biol Technol Agric 1(1):1

    CAS  Google Scholar 

  • Dashti N, Zhang F, Hynes R, Smith DL (1998) Plant growth promoting rhizobacteria accelerate nodulation and increase nitrogen fixation activity by field grown soybean [Glycine max (L.) Merr.] under short season conditions. Plant Soil 200(2):205–213

    Article  CAS  Google Scholar 

  • Dobereiner J (1995) Isolation and identification of aerobic nitrogen-fixing bacteria from soil and plants. Methods in applied soil microbiology and biochemistry. . Academic Press, London, pp 134–141

    Google Scholar 

  • Dye DW (1962) The inadequacy of the usual determinative tests for identification of Xanthomonas sp. NZ J Sci 5:393–416

    Google Scholar 

  • Elkoca E, Turan M, Donmez MF (2010) Effects of single, dual and triple inoculations with Bacillus subtilis, Bacillus megaterium and Rhizobium leguminosarum BV. Phaseoli on nodulation, nutrient uptake, yield and yield parameters of common bean (Phaseolus vulgaris L. CV. ‘ELKOCA-05’). J Plant Nutr 33:2104–2119. https://doi.org/10.1080/01904167.2010.519084

    Article  CAS  Google Scholar 

  • Erkal S (1981) Mercimek üretiminin yoğun olduğu Gaziantep-Urfa illerinde işletme düzeyinde üretim maliyetleri ve üretim tekniğinin ekonomik yönden değerlendirilmesi ile pazarlanması üzerine araştırma. Atatürk Bahçe Kültürleri Araştırma Enstitüsü, Araştırma 5:59

    Google Scholar 

  • Feigin A, Halevy J (1989) Irrigation-fertilization-cropping management for maximum economic return and minimum pollution of ground water. Research report. Inst Soil Water, ARO, The Volcani Center, Bet Dagan

    Google Scholar 

  • Fred E, Baldwin I, McCoy E (1932) Root nodule bacteria and leguminous plants. The University of Wisconsin Press, Madison, p 343

    Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:63–68

    Article  CAS  PubMed  Google Scholar 

  • Gopalakrishnan S, Vadlamudi S, Samineni S, Sameer Kumar CV (2016) Plant growth-promotion and biofortification of chickpea and pigeonpea through inoculation of biocontrol potential bacteria, isolated from organic soils. Springerplus 5:1882

    Article  PubMed  PubMed Central  Google Scholar 

  • Guiñazu LB, Andres JA, DelPapa MF, Pistorio M, Rosas SB (2010) Response of alfalfa (Medicago sativa L.) to single and mixed inoculation with phosphate-solubilising bacteria and Sinorhizobium meliloti. Biol Fertil Soils 46:185–190. https://doi.org/10.1007/s00374-009-0408-5

    Article  Google Scholar 

  • Gupta A, Saxena AK, Gopal M, Tilak KVBR (2003) Effects of co-inoculation of plant growth promoting rhizobacteria and Bradyrhizobium sp. (Vigna) on growth and yield of green gram [Vigna radiata (L.) Wilczek]. Trop Agric 80(1):28–35

    Google Scholar 

  • Jalali BL, Chand H (1991) Plant disease of international importance. In: Sing VS (ed) Diseases of cereals and pulses. Prentice Hall, New Jersey, p 426

    Google Scholar 

  • Jin CW, He YF, Tang CX, Wu P, Zheng SJ (2006) Mechanisms of microbially enhanced iron uptake in red clover. Plant Cell Environ 29:888–897

    Article  PubMed  Google Scholar 

  • Kaur J, Khanna V, Kumari P, Sharma R (2015) Influence of psychrotolerant plant growth-promoting rhizobacteria (PGPR) as coinoculants with Rhizobium on growth parameters and yield of lentil (Lens culinaris Medikus). Afr J Microbiol Res 9:258–264

    Article  CAS  Google Scholar 

  • Khalid S, Asghar HN, Akhtar MJ, Aslam A, Zahir ZA (2015) Biofortification of iron in chickpea by plant growth promoting rhizobacteria. Pak J Bot 47:1191–1194

    CAS  Google Scholar 

  • Khot GG, Tauro P, Dadarwal KR (1996) Rhizobacteria from chickpea (Cicer arietinum L) rhizosphere effective in wilt control and promote nodulation. Indian J Microbiol 36:217–222

    Google Scholar 

  • Khurana AL, Dudeja SS (1997) Biological nitrogen fixation technology for pulses production in India. Indian Institute of Pulses Research

    Google Scholar 

  • King EO, Ward MK, Raney DE (1954) Two simple media for the demonstration of pyocyanin and fluorescin. Transl Res 44(2):301–307

    CAS  Google Scholar 

  • Korir H, Mungai NW, Thuita M, Hamba Y, Masso C (2017) Co-inoculation effect of rhizobia and plant growth promoting rhizobacteria on common bean growth in a low phosphorus soil. Front Plant Sci 8:141

    Article  PubMed  PubMed Central  Google Scholar 

  • Kothari SK, Marschner H, Romheld V (1990) Direct and indirect effects of vam mycorrhizal fungi and rhizosphere microorganisms on acquisition of mineral nutrients by maize (Zea mays) in a calcareous soil. New Phytol 116:637–645

    Article  CAS  Google Scholar 

  • Krithika S, Balachandar D (2016) Expression of zinc transporter genes in rice as influenced by zinc-solubilizing Enterobacter cloacae strain ZSB14. Front Plant Sci 7:446

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar R, Chandra R (2008) Influence of PGPR and PSB on Rhizobium leguminosarum bv. viciae strain competition and symbiotic performance in lentil. World J Agric Sci 4(3):297–301

    Google Scholar 

  • Kumar P, Dubey R (2012) Plant growth promoting rhizobacteria for biocontrol of phytopathogens and yield enhancement of Phaseolus vulgaris. J Curr Pers Appl Microbiol 1:6–38

    Google Scholar 

  • Lee KK, Yoshida T (1997) An assay technique of measurement of nitrogenase activity in root zone of rice for varietal screening by the acetylene reduction method. Plant Soil 46:127–134. https://doi.org/10.1007/BF00693119

    Article  Google Scholar 

  • Lindsay WL, Norvell WA (1978) Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci Soc Am J 42(3):421–428

    Article  CAS  Google Scholar 

  • López-Bucio J, Campos-Cuevas JC, Hernández-Calderón E, Velásquez-Becerra C, Farías-Rodríguez R, Macías-Rodríguez LI, Valencia-Cantero E (2007) Bacillus megaterium rhizobacteria promote growth and alter root-system architecture through an auxin-and ethylene-independent signaling mechanism in Arabidopsis thaliana. Mol Plant Microbe Interact 20(2):207–217

    Article  PubMed  CAS  Google Scholar 

  • Malhi SS, Nyborg M, Harapiak JT (1998) Effects of long-term N fertilizer induced acidification and liming on micronutrients in soil and in brome grass hay. Soil Tillage Res 48:91–101

    Article  Google Scholar 

  • Malusà E, Pinzari F, Canfora L (2016) Efficacy of biofertilizers: challenges to improve crop production. In: Singh DP, Singh HB, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity. Springer, New Delhi, pp 17–40

    Chapter  Google Scholar 

  • Medeot DB, Paulucci NS, Albornoz AI, Fumero MV, Bueno MA, Garcia MB et al (2010) Plant growth promoting rhizobacteria improving the legume-rhizobia symbiosis. In: Khan MS, Zaidi A (eds) Microbes for legume improvement. Springer-Verlag, Berlin, pp 473–494

    Chapter  Google Scholar 

  • Milagres AMF, Machuca A, Napoleão D (1999) Detection of siderophore production from several fungi and bacteria by a modification of chrome azurol S (CAS) agar plate assay. J Microbiol Methods 37(1):1–6

    Article  CAS  PubMed  Google Scholar 

  • Mishra PK, Mishra S, Selvakumar G, Bishr JK, Kundu S, Gupta HS (2009) Co-inoculation of Bacillus thuringeinsis-KR1 with Rhizobium leguminosarum enhances plant growth and nodulation of pea (Pisum sativum L.) and lentil (Lens culinaris L.). World J Microbiol Biotechnol 25:753–761. https://doi.org/10.1007/s11274-009-9963-z

    Article  Google Scholar 

  • Mishra PK, Bisht SC, Ruwari P, Joshi GK, Singh G, Bisht JK, Bhatt JC (2011) Bioassociative effect of cold tolerant Pseudomonas sp. and Rhizobium leguminosarum-PR1 on iron acquisition, nutrient uptake and growth of lentil (Lens culinaris L.). Eur J Soil Biol 47:35–43. https://doi.org/10.1016/j.ejsobi.2010.11.005

    Article  CAS  Google Scholar 

  • Moreira FMS, Carvalho TS, Siqueira JO (2010) Effect of fertilizers, lime, and inoculation with rhizobia and mycorrhizal fungi on the growth of four leguminous tree species in a low-fertility soil. Biol Fertil Soils 46:771–779. https://doi.org/10.1007/s00374-010-0477-5

    Article  CAS  Google Scholar 

  • Morel MA, Braña V, Castro-Sowinski S (2012) Legume crops, importance and use of bacterial inoculation to increase production. Crop Plant 12:218–240

    Google Scholar 

  • Norris J (1959) The isolation and identification of azotobacters. Lab Pract 8:239–243

    Google Scholar 

  • Olsen SR (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA, Washington, p 939

    Google Scholar 

  • Ortíz-Castro R, Valencia-Cantero E, López-Bucio J (2008) Plant growth promotion by Bacillus megaterium involves cytokinin signaling. Plant Signal Behav 3(4):263–265

    Article  PubMed  PubMed Central  Google Scholar 

  • Paerl HW (1988) Nuisance phytoplankton blooms in coastal, estuarine, and inland waters. Limnol Oceanogr 33:823–847

    CAS  Google Scholar 

  • Pareek RP, Chandra R, Pareek N (2002) Role of pulseBNF technology in sustainable agriculture. In: Ali M, Chaturvedi SK, Gurha SN (eds) Proceedings of National Symposium on pulses for sustainable agriculture and nutritional security. Indian Institute of Pulses Research, Kanpur, pp 33–42

    Google Scholar 

  • Patten C, Glick B (2002) Role of Pseudomonas putida indole acetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795–3801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pikovskaya RI (1948) Mobilization of phosphorous in soil in connection with vital activity of some microbial species. Mikrobiologiya 17:362–370

    CAS  Google Scholar 

  • Qureshi MA, Shakir MA, Iqbal A, Akhtar N, Khan A (2012) Co-inoculation of phosphate solubilizing bacteria and rhizobia for improving growth and yield of mungbean (Vigna radiata L.). J Anim Plant Sci 21:491–497

    Google Scholar 

  • Raja P, Uma S, Gopal H, Govindarajan K (2006) Impact of bio inoculants consortium on rice root exudates, biological nitrogen fixation and plant growth. J Biol Sci 6:815–823

    Article  Google Scholar 

  • Rajawat MVS, Singh R, Singh D, Saxena AK (2019) Psychrotrophs of the genus Janthinobacterium with potential to weather potassium aluminosilicate mineral. 3 Biotech 9(4):142

    Article  PubMed  PubMed Central  Google Scholar 

  • Rana A, Joshi M, Prasanna R, Shivay YS, Nain L (2012) Biofortification of wheat through inoculation of plant growth promoting rhizobacteria and cyanobacteria. Eur J Soil Biol 50:118–126

    Article  CAS  Google Scholar 

  • Rautela RS, Chandra R, Pareek RP (2001) Enhanching Rhizobium inoculation efficiency in urd bean by co-inculation of Azatobactor chroococcum and Bacillus sp. Indian J Pulse Res 14(2):133–137

    Google Scholar 

  • Rohlf FJ (1998) NTSYSpc numerical taxonomy and multivariate analysis system version 2.0 user guide: Exeter Software, Setauket, New York, 31 pp.

  • Rotaru V, Sinclair TR (2009) Interactive influence of phosphorus and iron on nitrogen fixation by soybean. Environ Exp Bot 66(1):94–99

    Article  CAS  Google Scholar 

  • Roy SK, Rahman FH, Pal PP, Basak J (2018) Enhancing pulse productivity through agro-technologies under clustered frontline demonstration programme (Bihar, Jharkhand and West Bengal). ICAR- Agricultural Technology Application Research Institute, Kolkata, p 22

    Google Scholar 

  • Sa ALB, Dias ACF, Teixeiria MA, Vieira RF (2012) Contribution of N2 fixation for the world agriculture. In: Maheshwari DK (ed) Bacteria in agrobiology: plant probiotics. Springer-Verlag, Berlin, pp 33–42

    Google Scholar 

  • Saha R, Saha N, Donofrio RS, Bestervelt LL (2012) Microbial siderophores: a mini review. J Basic Microbiol 52:1–15

    Google Scholar 

  • Santi C, Bogusz D, Franche C (2013) Biological nitrogen fixation in non-legume plants. Ann Bot 111(5):743–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savci S (2012) An agricultural pollutant: chemical fertilizer. Int J Environ Sci Dev 3(1):73

    Article  Google Scholar 

  • Schalk IJ, Hannauer M, Braud A (2011) New roles for bacterial siderophores in metal transport and tolerance. Environ Microbiol 13:2844–2854

    Article  CAS  PubMed  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56. https://doi.org/10.1016/0003-2697(87)90612-9

    Article  CAS  PubMed  Google Scholar 

  • Sharma SB, Sayyed RZ, Trivedi MH, Gobit TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorous deficiency in agricultural soils. Springerplus 2:587–601. https://doi.org/10.1186/2193-1801-2-587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sindhu SS, Dadarwal KR (2000) Competition for nodulation among rhizobia in legume-Rhizobium symbiosis. Indian J Microbiol 40(4):211–246

    Google Scholar 

  • Singh JS (2013) Plant growth promoting rhizobacteria potential microbes for sustainable agriculture. Resonance 18:275–281. https://doi.org/10.1007/s12045-013-0038-y

    Article  Google Scholar 

  • Singh R, Adholeya A (2003) Interactions between arbuscular mycorrhizal fungi and plant-growth promoting rhizobacteria. Mycorrhiza News 15:16–17

    Google Scholar 

  • Singh YP, Chauhan CPS (2005) Effect of sulphur, phosphorus and Rhizobium inoculation on yield, content of micronutrients and phosphorus utilization of lentil. Indian J Pulses Res 18(2):211–213

    Google Scholar 

  • Singh D, Chhonkar PK, Pande RN (1999) Soil reaction in soil, plant, water analysis method: manual. IARI, ICAR, New Delhi, pp 11–13

    Google Scholar 

  • Singh D, Geat N, Rajawat MVS, Mahajan MM, Prasanna R, Singh S, Kaushik R, Singh RN, Kumar K, Saxena AK (2017) Deciphering the mechanisms of endophyte-mediated biofortification of Fe and Zn in wheat. J Plant Growth Regul 37(1):174–182

    Article  CAS  Google Scholar 

  • Singh D, Geat N, Rajawat MVS, Prasanna R, Saxena AK (2020) Performance of low and high Fe accumulator wheat genotypes grown on soils with low or high available Fe and endophyte inoculation. Acta Physiol Plant 42(2):24. https://doi.org/10.1007/s11738-019-2997-4

    Article  CAS  Google Scholar 

  • Sonmez Kaplan M, Sonmez S (2007) An investigation of seasonal changes in nitrate contents of soils and irrigation waters in greenhouses located in antalya-demre region. Asian J Chem 19(7):5639

    Google Scholar 

  • Stajkovic O, Delic D, Josic D, Kuzmanovic D, Rasulic N, Knezevic-Vukcevic J (2011) Improvement of common bean growth by co-inoculation with Rhizobium and plant growth-promoting bacteria. Rom Biotech Lett 16(1):5919–5926

    Google Scholar 

  • Standfold S, English L (1949) Use of flame photometer in rapid soil test for K and Ca. Agron J 41:446–447

    Article  Google Scholar 

  • Stanislawaska-Glubiak E, Korzeniowska J (2005) Effect of excessive zinc content in soil on the phosphorus content in wheat plants. Elect J Polish Agric Univ 8(4):1–8

    Google Scholar 

  • Subbiah B, Asija G (1956) A rapid procedure for the estimation of available nitrogen in soils. Curr Sci 25:259–260

    CAS  Google Scholar 

  • Tariq M, Hameed S, Yasmeen T, Zahid M, Zafar M (2014) Molecular characterization and identification of plant growth promoting endophytic bacteria isolated from the root nodules of pea (Pisum sativum L.). World J Microbiol Biotechnol 30:719–725. https://doi.org/10.1007/s11274-013-1488-9

    Article  CAS  PubMed  Google Scholar 

  • Tian X, Lu X, Mai W, Yang X, Li S (2008) Effect of calcium carbonate content on availability of zinc in soil and zinc and iron uptake by wheat plants. Soils 40(3):425–431

    CAS  Google Scholar 

  • Tilak KVBR, Ranganayaki N, Manoharachari C (2006) Synergistic effects of plant-growth promoting rhizobacteria and Rhizobium on nodulation and nitrogen fixation by pigeon pea (Cajanus cajan). Eur J Soil Sci 57:67–71. https://doi.org/10.1111/j.1365-2389.2006.00771.x

    Article  CAS  Google Scholar 

  • Trabelsi D, Mhamdi R (2013) Microbial inoculants and their impact on soil microbial communities: a review. BioMed Res Int. https://doi.org/10.1155/2013/863240

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsigie A, Tilak KVBR, Anil KS (2012) Field response of legumes to inoculation with plant growth-promoting rhizobacteria. Biol Fertil Soils 47:971–974. https://doi.org/10.1007/s00374-011-0573-1

    Article  Google Scholar 

  • Vassilev N, Vassileva M, Fenice M, Federici F (2001) Immobilized cell technology applied in solubilization of insoluble inorganic (rock) phosphates and P plant acquisition. Biores Technol 79:263–271

    Article  CAS  Google Scholar 

  • Vassilev N, Vassileva M, Nikolaeva I (2006) Simultaneous P-solubilizing and biocontrol activity of microorganisms: potentials and future trends. Appl Microbiol Biotechnol 71:137–144

    Article  CAS  PubMed  Google Scholar 

  • Verma JP, Yadav J, Tiwari KN (2012) Enhancement of nodulation and yield of chickpea by co-inoculation of indigenous mesorhizobium sp. and plant growth-promoting rhizobacteria in eastern Uttar Pradesh. Commun Soil Sci Plant Anal 43:605–621. https://doi.org/10.1080/00103624.2012.639110

    Article  CAS  Google Scholar 

  • Walky A, Black I (1934) An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid in soil analysis. Exp Soil Sci 79:459–465

    Google Scholar 

  • Walpola BC, Yoon M (2013) Phosphate solubilizing bacteria: assessment of their effect on growth promotion and phosphorous uptake of mung bean (Vigna radiata [L.] R. Wilczek). Chil J Agric Res 73:275–281. https://doi.org/10.4067/S0718-58392013000300010

    Article  Google Scholar 

  • Wang X, Pan Q, Chen F, Yan X, Liao H (2011) Effects of co-inoculation with arbuscular mycorrhizal fungi and rhizobia on soybean growth as related to root architecture and availability of N and P. Mycorrhiza 21:173–181

    Article  PubMed  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007) Co-inoculation of nitrogen fixing and phosphate solubilizing bacteria to promote growth, yield and nutrient uptake in chickpea. Acta Agron Hung 55:315–323. https://doi.org/10.1556/AAgr.55.2007.3.7

    Article  CAS  Google Scholar 

  • Xu H, Paerl HW, Qin B, Zhu G, Gao G (2010) Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu. China Limnol Oceanogr 55(1):420–432

    Article  CAS  Google Scholar 

  • Yahlom R, Okon Y, Dovrat A (1988) Early nodulation in legumes inoculated with Azospirillum and Rhizobium. Symbiosis 6:69–79

    Google Scholar 

  • Zahir A, Arshad M, Berger F Jr, William T (2004) Plant growth promoting Rhizobacteria: application and perspectives in agriculture. In: Sparks DL (ed) Advances in agronomy. Academic Press, pp 81–97

    Google Scholar 

  • Zahir ZA, Zafar-ul-Hye M, Sajjad S, Naveed M (2011) Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC-deaminase for coinoculation with Rhizobium leguminosarum to improve growth, nodulation, and yield of lentil. Biol Fert Soils 47(4):457–465

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to ICAR New Delhi for providing financial support through AINP- Soil Biodiversity and Biofertilizers project. The Department of Microbiology, College of Basic Sciences & Humanities, Rajendra Prasad Central Agricultural University, Pusa, Samastipur, Bihar, India, is gratefully acknowledged for the facilities provided, during the present study.

Funding

The authors are thankful to the Rajendra Prasad Central Agricultural University, Pusa, Samastipur, Bihar and Indian Council of Agricultural Research (ICAR) New Delhi and for providing financial support, in the form of projects. Authors are also thankful to ICAR-CAZRI Jodhpur, Rajasthan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devendra Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Consent was obtained from all the individual participants included in the study.

Research involving Human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by Erko Stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 KB)

203_2021_2446_MOESM2_ESM.tif

Supplementary file2 (TIF 64 KB) Supplementary Fig. 1 Relationship among agromicrobes based on utilization of different sources of substrates.# RR1: Rhizobium leguminosarum subsp. viciae RR1; RR2: Rhizobium leguminosarum subsp. viciae RR2; RR3: Rhizobium leguminosarum subsp viciae RR3; RAZ1: Azospirillum sp. RAZ1; RAZ2: Azospirillum sp. RAZ2; RAZt1: Azotobacter sp. RAZt1; RAZt2: Azotobacter sp. RAZt2; RAZt1: Azotobacter sp. RAZt1; RP1: Pseudomonas sp. RP1; RP2: Pseudomonas sp. RP2; RB1: Bacillus sp. RB1; RB2: Bacillus sp. RB2

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Jha, M.N., Singh, D. et al. Prospecting catabolic diversity of microbial strains for developing microbial consortia and their synergistic effect on Lentil (Lens esculenta) growth, yield and iron biofortification. Arch Microbiol 203, 4913–4928 (2021). https://doi.org/10.1007/s00203-021-02446-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-021-02446-9

Keywords

Navigation