Skip to main content

Flavobacterium difficile sp. nov., isolated from a freshwater waterfall

Abstract

A bacterial strain designated KDG-16 T is isolated from a freshwater waterfall in Taiwan and characterized to determine its taxonomic affiliation. Cells of strain KDG-16 T are Gram-stain-negative, strictly aerobic, motile by gliding, rod-shaped and form light yellow colonies. Optimal growth occurs at 20–25 °C, pH 6–7, and with 0% NaCl. Phylogenetic analyses based on 16S rRNA gene sequences and an up-to-date bacterial core gene set reveal that strain KDG-16 T is affiliated with species in the genus Flavobacterium. Analysis of 16S rRNA gene sequences shows that strain KDG-16 T shares the highest similarity with Flavobacterium terrigena DSM 17934 T (97.7%). The average nucleotide identity, average amino acid identity and digital DNA–DNA hybridization values between strain KDG-16 T and the closely related Flavobacterium species are below the cut-off values of 95–96, 90 and 70%, respectively, used for species demarcation. Strain KDG-16 T contains iso-C15:0, iso-C15:1 G and iso-C17:0 3-OH as the predominant fatty acids. The polar lipid profile consists of phosphatidylethanolamine, one uncharacterized aminophospholipid, one uncharacterized phospholipid, two uncharacterized aminolipids and two uncharacterized lipids. The major polyamine is homospermidine. The major isoprenoid quinone is MK-6. Genomic DNA G + C content of strain KDG-16 T is 31.6%. Based on the polyphasic taxonomic data obtained, strain KDG-16 T is considered to represent a novel species in the genus Flavobacterium, for which the name Flavobacterium difficile sp. nov. is proposed. The type strain is KDG-16 T (= BCRC 81194 T = LMG 31332 T).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Abbreviations

eggNOG:

Evolutionary genealogy of genes: Nonsupervised Orthologous Groups

UBCG:

Up-to-date bacterial core gene set

ANI:

Average nucleotide identity

AAI:

Average amino acid identity

dDDH:

Digital DNA–DNA hybridization

PE:

Phosphatidylethanolamine

APL:

Uncharacterized aminophospholipid

PL:

Uncharacterized phospholipid

AL:

Uncharacterized aminolipid

L:

Uncharacterized lipid

HSPD:

Homospermidine

SPD:

Spermidine; MK-6, menaquinone-6

References

  1. Anzai Y, Kudo Y, Oyaizu H (1997) The phylogeny of genera Chryseomonas, Flavimonas, and Pseudomonas supports synonymy of these three genera. Int J Syst Bacteriol 47:249–251

    CAS  PubMed  Article  Google Scholar 

  2. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. Bergey DH, Harrison FC, Breed RS, Hammer BW, Huntoon FM (1923) Genus II. Flavobacterium gen. nov. In: Bergey’s Manual of Determinative Bacteriology, 1st edn. Williams & Wilkins, Baltimore, p 97–117

  4. Bernardet JF, Bowman JP (2011) Genus I. Flavobacterium. In: Whitman W (ed) Bergey’s Manual of Systematic Bacteriology, vol 4, 2nd edn. Williams & Wilkins, Baltimore, p 112–154

  5. Bernardet JF, Nakagawa Y, Holmes B (2002) Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52:1049–1070

    CAS  PubMed  Google Scholar 

  6. Bernardet JF, Segers P, Vancanneyt M, Berthe F, Kersters K, Vandamme P (1996) Cutting a Gordian knot: emended classification and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom. nov. (Basonym, Cytophaga aquatilis Strohl and Tait 1978). Int J Syst Bacteriol 46:128–148

    Article  Google Scholar 

  7. Blom J, Kreis J, Spänig S, Juhre T, Bertelli C, Ernst C, Goesmann A (2016) EDGAR 2.0: an enhanced software platform for comparative gene content analyses. Nucleic Acids Res 44:W22–W28

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. Bowman JP (2000) Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 50:1861–1868

    CAS  PubMed  Article  Google Scholar 

  9. Breznak JA, Costilow RN (2007) Physicochemical factors in growth. In: Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR et al (eds) Methods for general and molecular bacteriology, 3rd edn. American Society for Microbiology, Washington, DC, pp 309–329

    Google Scholar 

  10. Busse HJ, Auling G (1988) Polyamine pattern as chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 11:1–8

    CAS  Article  Google Scholar 

  11. Busse HJ, Bunka S, Hensel A, Lubitz W (1997) Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 47:698–708

    CAS  Article  Google Scholar 

  12. Chang SC, Wang JT, Vandamme P, Hwang JH, Chang PS, Chen WM (2004) Chitinimonas taiwanensis gen. nov., sp. nov., a novel chitinolytic bacterium isolated from a freshwater pond for shrimp culture. Syst Appl Microbiol 27:43–49

    CAS  PubMed  Article  Google Scholar 

  13. Collins MD (1994) Isoprenoid quinones. In: Goodfellow M, O’Donnell AG (eds) Chemical methods in prokaryotic systematics. Wiley, Chichester, pp 265–309

    Google Scholar 

  14. Dong K, Chen F, Du Y, Wang G (2013) Flavobacterium enshiense sp. nov., isolated from soil, and emended descriptions of the genus Flavobacterium and Flavobacterium cauense, Flavobacterium saliperosum and Flavobacterium suncheonense. Int J Syst Evol Microbiol 63:886–892

    CAS  PubMed  Article  Google Scholar 

  15. Embley TM, Wait R (1994) Structural lipids of eubacteria. In: Goodfellow M, O’Donnell AG (eds) Chemical methods in prokaryotic systematics. Wiley, Chichester, pp 121–161

    Google Scholar 

  16. Ewels P, Magnusson M, Lundin S, Käller M (2016) MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32:3047–3048

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    CAS  PubMed  Article  Google Scholar 

  18. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007) DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  20. Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, von Mering C, Bork P (2017) Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol 34:2115–2122

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D, Walter MC, Rattei T, Mende DR, Sunagawa S, Kuhn M, Jensen LJ, von Mering C, Bork P (2016) eggNOG4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res 44:D286–D293

    CAS  PubMed  Article  Google Scholar 

  22. Kämpfer P, Rossellό-Mora R, Hermansson M, Persson F, Huber B, Falsen E, Busse HJ (2007) Undibacterium pigrum gen. nov., sp. nov., isolated from drinking water. Int J Syst Evol Microbiol 57:1510–1515

    PubMed  Article  CAS  Google Scholar 

  23. Kang JY, Chun J, Jahng KY (2013) Flavobacterium aciduliphilum sp. nov., isolated from freshwater, and emended description of the genus Flavobacterium. Int J Syst Evol Microbiol 63:1633–1638

    CAS  PubMed  Article  Google Scholar 

  24. Kluge AG, Farris FS (1969) Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–32

    Article  Google Scholar 

  25. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. Kuo I, Saw J, Kapan DD, Christensen S, Kaneshiro KY, Donachie SP (2013) Flavobacterium akiainvivens sp. nov., from decaying wood of Wikstroemia oahuensis, Hawai‘i, and emended description of the genus Flavobacterium. Int J Syst Evol Microbiol 63:3280–3286

    CAS  PubMed  Article  Google Scholar 

  27. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    CAS  Article  Google Scholar 

  28. Lee I, Ouk Kim Y, Park SC, Chun J (2016) OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 66:1100–1103

    CAS  PubMed  Article  Google Scholar 

  29. Ludwig W, Euzéby J, Whitman WB (2011) Taxonomic outlines of the phyla Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes. In: Whitman W (ed) Bergey’s Manual of Systematic Bacteriology, vol 4, 2nd edn. Williams & Wilkins, Baltimore, p 21–24

  30. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14:60

    PubMed  PubMed Central  Article  Google Scholar 

  31. Na SI, Kim YO, Yoon SH, Ha SM, Baek I, Chun J (2018) UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 56:280–285

    CAS  PubMed  Article  Google Scholar 

  32. Nokhal TH, Schlegel HG (1983) Taxonomic study of Paracoccus denitrificans. Int J Syst Bacteriol 33:26–37

    Article  Google Scholar 

  33. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, Edwards R, Gerdes S, Parrello B, Shukla M, Vonstein V, Wattam AR, Xia F, Stevens R (2014) The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acid Res 42:D206–D214

    CAS  PubMed  Article  Google Scholar 

  34. Reichenbach H (1992) The order Cytophagales. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH et al (eds) The prokaryotes, a handbook on the biology of bacteria: ecophysiology, isolation, identification, applications, 2nd edn. Springer, New York, NY, pp 3631–3675

    Google Scholar 

  35. Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106:19126–19131

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. Rodriguez-R LM, Konstantinidis KT (2014) Bypassing cultivation to identify bacterial species. Microbe Magazine 9:111–118

    Article  Google Scholar 

  37. Saitou N, Nei M (1987) The neighbor-joining method: a new method for constructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  Google Scholar 

  38. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Inc, Newark, DE

    Google Scholar 

  39. Schmidt K, Connor A, Britton G (1994) Analysis of pigments: carotenoids and related polyenes. In: Goodfellow M, O’Donnell AG (eds) Chemical methods in prokaryotic systematics. Wiley, Chichester, pp 403–461

    Google Scholar 

  40. Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. Tindall BJ, Sikorski J, Smibert RA, Krieg NR (2007) Phenotypic characterization and the principles of comparative systematics. In: Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR et al (eds) Methods for general and molecular bacteriology, 3rd. American Society for Microbiology, Washington, DC, pp 330–393

    Google Scholar 

  42. Weisburg WG, Burns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. Wen CM, Tseng CS, Cheng CY, Li YK (2002) Purification, characterization and cloning of a chitinase from Bacillus sp. NCTU2. Biotechnol Appl Biochem 35:213–219

    CAS  PubMed  Article  Google Scholar 

  44. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613–1617

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Funding

The authors received no specific grant from any funding agency.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shih-Yi Sheu.

Ethics declarations

Conflicts of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Erko Stackebrandt.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 838 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, WM., You, YX., Young, CC. et al. Flavobacterium difficile sp. nov., isolated from a freshwater waterfall. Arch Microbiol 203, 4449–4459 (2021). https://doi.org/10.1007/s00203-021-02440-1

Download citation

Keywords

  • Flavobacterium difficile
  • Flavobacteriaceae
  • Flavobacteriales
  • Flavobacteriia
  • Bacteroidetes