Skip to main content
Log in

Cys183 and Cys258 in Cry49Aa toxin from Lysinibacillus sphaericus are essential for toxicity to Culex quinquefasciatus larvae

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The two-component Cry48Aa/Cry49Aa toxin produced by Lysinibacillus sphaericus shows specifically toxic to Culex quinquefasciatus mosquito larvae. Cry49Aa C-terminal domain is responsible for specific binding to the larval gut cell membrane, while its N-terminal domain is required for interaction with Cry48Aa. To investigate functional role of cysteine in Cry49Aa, four cysteine residues at positions 70, 91, 183, and 258 were substituted by alanine. All mutants showed similar crystalline morphology and comparable yield to that of the wild type except that the yield of the C91A mutant was low. Four cysteine residues did not involve in disulfide bond formation within or between Cry49Aa molecules. Cys91, Cys183, and Cys258 are essential for larvicidal activity against C. quinquefasciatus larvae, while Cys70 is not. Substitution at C91, C183, and C258 caused weaker Cry48Aa- Cry49Aa interaction, while mutations at C183 and C258 reduced the binding capacities to the larval gut cell membrane. Thus, Cysteine residues at position 91, 183, and 258 in Cry49Aa are required for full toxicity of Cry48Aa/Cry49Aa toxin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Boonyos P, Soonsanga S, Boonserm P, Promdonkoy B (2010) Role of cysteine at positions 67, 161 and 241 of a Bacillus sphaericus binary toxin BinB. BMB Rep 43:23–28

    Article  CAS  Google Scholar 

  • Bravo A, Gómez I, Conde J, Muñoz-Garay C, Sánchez J et al (2004) Oligomerization triggers binding of a Bacillus thuringiensis Cry1Ab pore-forming toxin to aminopeptidase N receptor leading to insertion into membrane microdomains. Biochim Biophys Acta 1667:38–46

    Article  CAS  Google Scholar 

  • Bravo A, Gill SS, Soberón M (2007) Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49:423–435

    Article  CAS  Google Scholar 

  • Charles JF, Nielson-LeRoux C, Delécluse A (1996) Bacillus sphaericus toxins: molecular biology and mode of action. Annu Rev Entomol 41:451–472

    Article  CAS  Google Scholar 

  • de Melo JV, Jones GW, Berry C, Vasconcelos RH, de Oliveira CM et al (2009) Cytopathological effects of Bacillus sphaericus Cry48Aa/Cry49Aa toxin on binary toxin-susceptible and -resistant Culex quinquefasciatus larvae. Appl Environ Microbiol 75:4782–4789

    Article  Google Scholar 

  • Delécluse A, Charles JF, Klier A, Rapoport G (1991) Deletion by in vivo recombination shows that the 28-kilodalton cytolytic polypeptide from Bacillus thuringiensis subsp. israelensis is not essential for mosquitocidal activity. J Bacteriol 173:3374–3381

    Article  Google Scholar 

  • Girard F, Vachon V, Préfontaine G, Marceau L, Su Y et al (2008) Cysteine scanning mutagenesis of alpha4, a putative pore-lining helix of the Bacillus thuringiensis insecticidal toxin Cry1Aa. Appl Environ Microbiol 74:2565–2572

    Article  CAS  Google Scholar 

  • Guo Q, Cai Q, Yan J, Hu X, Zheng D, Yuan Z (2013) Single nucleotide deletion of cqm1 gene results in the development of resistance to Bacillus sphaericus in Culex quinquefasciatus. J Insect Physiol 59:967–973

    Article  CAS  Google Scholar 

  • Guo Q, Hu X, Cai Q, Yan J, Yuan Z (2016) Interaction of Lysinibacillus sphaericus Cry48Aa/Cry49Aa toxin with midgut brush-border membrane fractions from Culex quinquefasciatus larvae. Insect Mol Biol 25:163–170

    Article  CAS  Google Scholar 

  • Guo Q, Gao Y, Xing C, Ding L, Dai X et al (2020) The Cry48Aa N-terminal domain is responsible for Cry48Aa-Cry49Aa interaction in Lysinibacillus sphaericus toxin. Curr Microbiol 77:1217–1222

    Article  CAS  Google Scholar 

  • Jones GW, Nielsen-Leroux C, Yang Y, Yuan Z, Dumas VF et al (2007) A new Cry toxin with a unique two-component dependency from Bacillus sphaericus. FASEB J 21:4112–4120

    Article  CAS  Google Scholar 

  • Jones GW, Wirth MC, Monnerat RG, Berry C (2008) The Cry48Aa-Cry49Aa binary toxin from Bacillus sphaericus exhibits highly restricted target specificity. Environ Microbiol 10:2418–2424

    Article  CAS  Google Scholar 

  • Kelker MS, Berry C, Evans SL, Pai R, McCaskill DG et al (2014) Structural and biophysical characterization of Bacillus thuringiensis insecticidal proteins Cry34Ab1 and Cry35Ab1. PloS One. 9:e112555

    Article  Google Scholar 

  • Okamoto A, Kosugi A, Koizumi Y, Yanagida F, Udaka S (1997) High efficiency transformation of Bacillus brevis by electroporation. Biosci Biotech Bioch 61:202–203

    Article  CAS  Google Scholar 

  • Pardo-López L, Soberón M, Bravo A (2013) Bacillus thuringiensis insecticidal three-domain Cry toxins: mode of action, insect resistance and consequences for crop protection. FEMS Microbiol Rev 37:3–22

    Article  Google Scholar 

  • Pei G, Oliveira CM, Yuan Z, Nielsen-LeRoux C, Silva-Filha MH et al (2002) A strain of Bacillus sphaericus causes slower development of resistance in Culex quinquefasciatus. Appl Environ Microbiol 68:3003–3009

    Article  CAS  Google Scholar 

  • Promdonkoy B, Promdonkoy P, Wongtawan B, Boonserm P, Panyim S (2008) Cys31, Cys47, and Cys195 in BinA are essential for toxicity of a binary toxin from Bacillus sphaericus. Curr Microbiol 56:334–338

    Article  CAS  Google Scholar 

  • Rezende T, Romão TP, Batista M, Berry C, Adang MJ et al (2017) Identification of Cry48Aa/Cry49Aa toxin ligands in the midgut of Culex quinquefasciatus larvae. Insect Biochem Mol Biol 88:63–70

    Article  CAS  Google Scholar 

  • Rezende T, Rezende A, Luz Wallau G, Santos Vasconcelos C et al (2019) A diferential transcriptional profle by Culex quinquefasciatus larvae resistant to Lysinibacillus sphaericus IAB59 highlights genes and pathways associated with the resistance phenotype. Parasit Vectors 12:407

    Article  Google Scholar 

  • Silva-Filha MH, Nielsen-Leroux C, Charles JF (1997) Binding kinetics of Bacillus sphaericus binary toxin to midgut brush-border membranes of Anopheles and Culex sp. mosquito larvae. Eur J Biochem 247:754–761

    Article  CAS  Google Scholar 

  • Srisucharitpanit K, Yao M, Promdonkoy B, Chimnaronk S, Tanaka I et al (2014) Crystal structure of BinB: a receptor binding component of the binary toxin from Lysinibacillus sphaericus. Proteins 82:2703–2712

    Article  CAS  Google Scholar 

  • WHO (1985) Informal consultation on the development of Bacillus sphaericus asmicrobial larvicide. Washington. Document TDR/BCV/SPHAERICUS/85.3, pp. 1–24

Download references

Acknowledgements

This work was supported by a National Natural Science Foundation of China (NSFC) Grant (31702069).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingyun Guo.

Additional information

Communicated by Erko Stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Q., Ding, L., Gao, Y. et al. Cys183 and Cys258 in Cry49Aa toxin from Lysinibacillus sphaericus are essential for toxicity to Culex quinquefasciatus larvae. Arch Microbiol 203, 4587–4592 (2021). https://doi.org/10.1007/s00203-021-02436-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-021-02436-x

Keywords