Skip to main content

The combined effect of stressful factors (temperature and pH) on the expression of biofilm, stress, and virulence genes in Salmonella enterica ser. Enteritidis and Typhimurium

Abstract

Salmonella enterica is a major food borne pathogen that creates biofilm. Salmonella biofilm formation under different environmental conditions is a public health problem. The present study was aimed to evaluate the combined effects of stressful factors (temperature and pH) on the expression of biofilm, stress, and virulence genes in Salmonella Enteritidis and Salmonella Typhimurium. In this study, the effect of temperature (2, 8, 22.5, 37, 43 °C) and pH (2.4, 3, 4.5, 6, 6.6) on the expression of biofilm production genes (adr A, bap A), virulence genes (hil A, inv A) and the stress gene (RpoS) of S. Enteritidis and S. Typhimurium was evaluated. The response surface methodology (RSM) approach was used to evaluate the combined effect of the above factors. The highest expression of adr A, bap A, hil A, and RpoS gene for S. Typhimurium was at 22 °C–pH 4.5 (6.39-fold increase), 37 °C–pH 6 (3.92-fold increase), 37 °C–pH 6 (183-fold increase), and 37 °C–pH 3 (43.8-fold increase), respectively. The inv A gene of S. Typhimurium was decreased in all conditions. The adr A, bap A, hil A, inv A, and RpoS gene of S. Enteritidis had the highest expression level at 8 °C–pH 3 (4.09-fold increase), 22 °C–pH 6 (2.71-fold increase), 8 °C pH 3 (190-fold increase), 22 °C–pH 4.5 (9.21-fold increase), and 8 °C–pH 3 (16.6-fold), respectively. Response surface methodology (RSM) indicated that the temperature and pH had no significant effect on the expression level of adr A, bap A, hil A, Inv A, and RpoS gene in S. Enteritidis and S. Typhimurium. The expression of biofilm production genes (adr A, bap A), virulence genes (hil A, inv A) and the stress gene (RpoS) of S. Enteritidis and S. Typhimurium is not directly and exclusively associated with temperature and pH conditions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Álvarez-Ordóñez A, Fernández A, Bernardo A, López M (2010) Acid tolerance in Salmonella typhimurium induced by culturing in the presence of organic acids at different growth temperatures. Food Microbiol 27:44–49

    PubMed  Google Scholar 

  2. Ben Miloud Yahia N et al (2018) Effect of temperature and gamma radiation on Salmonella hadar biofilm production on different food contact surfaces. J Food Qual. https://doi.org/10.1155/2018/9141540

    Article  Google Scholar 

  3. Berger CN et al (2009) Interaction of Salmonella enterica with basil and other salad leaves. ISME J 3:261

    CAS  PubMed  Google Scholar 

  4. Betancor L et al (2010) Prevalence of Salmonella enterica in poultry and eggs in Uruguay during an epidemic due to Salmonella enterica serovar Enteritidis. J Clin Microbiol 48:2413–2423

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Castelijn GA, van der Veen S, Zwietering MH, Moezelaar R, Abee T (2012) Diversity in biofilm formation and production of curli fimbriae and cellulose of Salmonella Typhimurium strains of different origin in high and low nutrient medium. Biofouling 28:51–63

    CAS  PubMed  Google Scholar 

  6. Centers for Disease Control and Prevention (2018) Reports of selected Salmonella outbreak investigations. Centers for Disease Control and Prevention, Atlanta, GA. Accessed 3 Nov 2019

  7. Choi J, Groisman EA (2016) Acidic pH sensing in the bacterial cytoplasm is required for Salmonella virulence. Mol Microbiol 101:1024–1038

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Churi AS (2005) Effect of heat shock on hilA expression in Salmonella Typhimurium. Texas A&M University, Texas

    Google Scholar 

  9. Doran JL et al (1994) fimA and tctC based DNA diagnostics for Salmonella. Mol Cell Probes 8:291–310

    CAS  PubMed  Google Scholar 

  10. Dorman CJ, Porter ME (1998) The Shigella virulence gene regulatory cascade: a paradigm of bacterial gene control mechanisms. Mol Microbiol 29:677–684

    CAS  PubMed  Google Scholar 

  11. Foster JW, Hall HK (1991) Inducible pH homeostasis and the acid tolerance response of Salmonella typhimurium. J Bacteriol 173:5129–5135

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Guard-Petter J (2001) The chicken, the egg and Salmonella enteritidis. Environ Microbiol 3:421–430

    CAS  PubMed  Google Scholar 

  13. Guo X, Chen J, Beuchat LR, Brackett RE (2000) PCR detection of salmonella entericaserotype montevideo in and on raw tomatoes using primers derived from hila. Appl Environ Microbiol 66:5248–5252

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Hu S, Yu Y, Zhou D, Li R, Xiao X, Wu H (2018) Global transcriptomic acid tolerance response in Salmonella Enteritidis. Lwt 92:330–338

    CAS  Google Scholar 

  15. Hwang D, Rothrock MJ Jr, Pang H, Guo M, Mishra A (2020) Predicting Salmonella prevalence associated with meteorological factors in pastured poultry farms in southeastern United States. Sci Total Environ 713:136359

    CAS  PubMed  Google Scholar 

  16. Iliadis I, Daskalopoulou A, Simões M, Giaouris E (2018) Integrated combined effects of temperature, pH and sodium chloride concentration on biofilm formation by Salmonella enterica ser. Enteritidis and Typhimurium under low nutrient food-related conditions. Food Res Int 107:10–18

    CAS  PubMed  Google Scholar 

  17. Jimenez SM, Archelasqui R, Salsi MS, del Carmen TM, Moguilevsky MA, Elida M (2015) Assessment of fate of Argentinean Salmonella serotypes studied under different conditions of growing factors. J Virol Microbiol 2015:b1-16

    Google Scholar 

  18. Khaltabadi RF, Shahrokhi N, Ebrahimi-Rad M, Ehsani P (2019) Salmonella Typhimurium in Iran: contribution of molecular and IS200 PCR methods in variants detection. PLoS ONE 14:e0213726

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kim H, Rhee M-S (2016) Influence of low-shear modeled microgravity on heat resistance, membrane fatty acid composition, and heat stress-related gene expression in Escherichia coli O157: H7 ATCC 35150, ATCC 43889, ATCC 43890, and ATCC 43895. Appl Environ Microbiol 82:2893–2901

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Lamas A, Fernandez-No I, Miranda J, Vázquez B, Cepeda A, Franco C (2016) Biofilm formation and morphotypes of Salmonella enterica subsp. arizonae differs from those of other Salmonella enterica subspecies in isolates from poultry houses. J Food Protect 79:1127–1134

    CAS  Google Scholar 

  21. Long P (1970) Some factors affecting the severity of infection with Eimeria tenella in chicken embryos. Parasitology 60:435–447

    CAS  PubMed  Google Scholar 

  22. Mai TL, Conner DE (2007) Effect of temperature and growth media on the attachment of Listeria monocytogenes to stainless steel. Int J Food Microbiol 120:282–286

    CAS  PubMed  Google Scholar 

  23. Moraes JO et al (2018) Predicting adhesion and biofilm formation boundaries on stainless steel surfaces by five Salmonella enterica strains belonging to different serovars as a function of pH, temperature and NaCl concentration. Int J Food Microbiol 281:90–100

    CAS  PubMed  Google Scholar 

  24. Nguyen H, Yang Y, Yuk H (2014) Biofilm formation of Salmonella Typhimurium on stainless steel and acrylic surfaces as affected by temperature and pH level. LWT-Food Sci Technol 55:383–388

    CAS  Google Scholar 

  25. O’Leary D, McCabe EM, McCusker MP, Martins M, Fanning S, Duffy G (2015) Acid environments affect biofilm formation and gene expression in isolates of Salmonella enterica Typhimurium DT104. Int J Food Microbiol 206:7–16

    CAS  PubMed  Google Scholar 

  26. Piras F, Fois F, Consolati SG, Mazza R, Mazzette R (2015) Influence of temperature, source, and serotype on biofilm formation of Salmonella enterica isolates from pig slaughterhouses. J Food Prot 78:1875–1878

    CAS  PubMed  Google Scholar 

  27. Pradhan D, Negi VD (2019) Stress-induced adaptations in Salmonella: a ground for shaping its pathogenesis. Microbio Res 229:126311

    CAS  Google Scholar 

  28. Queiroz MH, Madrid C, Paytubi S, Balsalobre C, Juarez A (2011) Integration host factor alleviates H-NS silencing of the Salmonella enterica serovar Typhimurium master regulator of SPI1, hilA. Microbiology 157:2504–2514

    CAS  PubMed  Google Scholar 

  29. Samelis J, Ikeda J, Sofos J (2003) Evaluation of the pH-dependent, stationary-phase acid tolerance in Listeria monocytogenes and Salmonella Typhimurium DT104 induced by culturing in media with 1% glucose: a comparative study with Escherichia coli O157: H7. J Appl Microbiol 95:563–575

    CAS  PubMed  Google Scholar 

  30. Samie A, Guerrant R, Barrett L, Bessong P, Igumbor E, Obi C (2009) Prevalence of intestinal parasitic and bacterial pathogens in diarrhoeal and non-diarroeal human stools from Vhembe district, South Africa. J Health Popul Nutr 27:739

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Sang Y, Ren J, Ni J, Tao J, Lu J, Yao Y-F (2016) Protein acetylation is involved in Salmonella enterica serovar Typhimurium virulence. J Infect Dis 213:1836–1845

    CAS  PubMed  Google Scholar 

  32. Shah J, Desai PT, Chen D, Stevens JR, Weimer BC (2013) Preadaptation to cold stress in Salmonella enterica serovar Typhimurium increases survival during subsequent acid stress exposure. Appl Environ Microbiol 79:7281–7289

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Simões M, Simões LC, Machado I, Pereira MO, Vieira MJ (2006) Control of flow-generated biofilms with surfactants: evidence of resistance and recovery. Food Bioprod Process 84:338–345

    Google Scholar 

  34. Sirsat S, Burkholder K, Muthaiyan A, Dowd S, Bhunia A, Ricke S (2011) Effect of sublethal heat stress on Salmonella Typhimurium virulence. J Appl Microbiol 110:813–822

    CAS  PubMed  Google Scholar 

  35. Steenackers H, Hermans K, Vanderleyden J, De Keersmaecker SC (2012) Salmonella biofilms: an overview on occurrence, structure, regulation and eradication. Food Res Int 45:502–531

    CAS  Google Scholar 

  36. Stepanović S, Vuković D, Dakić I, Savić B, Švabić-Vlahović M (2000) A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods 40:175–179

    PubMed  Google Scholar 

  37. Stepanović S, Ćirković I, Mijač V, Švabić-Vlahović M (2003) Influence of the incubation temperature, atmosphere and dynamic conditions on biofilm formation by Salmonella spp. Food Microbiol 20:339–343

    Google Scholar 

  38. Stepanović S, Ćirković I, Ranin L, Svabić-Vlahović M (2004) Biofilm formation by Salmonella spp. and Listeria monocytogenes on plastic surface. Lett Appl Microbiol 38:428–432

    PubMed  Google Scholar 

  39. Wang H, Ye K, Wei X, Cao J, Xu X, Zhou G (2013) Occurrence, antimicrobial resistance and biofilm formation of Salmonella isolates from a chicken slaughter plant in China. Food Control 33:378–384

    CAS  Google Scholar 

  40. White-Ziegler CA, Um S, Perez NM, Berns AL, Malhowski AJ, Young S (2008) Low temperature (23 C) increases expression of biofilm-, cold-shock-and RpoS-dependent genes in Escherichia coli K-12. Microbiology 154:148–166

    CAS  PubMed  Google Scholar 

  41. Yang Y et al (2014a) Membrane lipid composition and stress/virulence related gene expression of Salmonella Enteritidis cells adapted to lactic acid and trisodium phosphate and their resistance to lethal heat and acid stress. Int J Food Microbiol 191:24–31

    CAS  PubMed  Google Scholar 

  42. Yang Y, Khoo WJ, Zheng Q, Chung H-J, Yuk H-G (2014b) Growth temperature alters Salmonella Enteritidis heat/acid resistance, membrane lipid composition and stress/virulence related gene expression. Int J Food Microbiol 172:102–109

    CAS  PubMed  Google Scholar 

  43. Yang Y, Mikš-Krajnik M, Zheng Q, Lee S-B, Lee S-C, Yuk H-G (2016) Biofilm formation of Salmonella Enteritidis under food-related environmental stress conditions and its subsequent resistance to chlorine treatment. Food Microbiol 54:98–105

    CAS  Google Scholar 

  44. Yim L et al (2010) Differential phenotypic diversity among epidemic-spanning Salmonella enterica serovar Enteritidis isolates from humans or animals. Appl Environ Microbiol 76:6812–6820

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by Kashan University of Medical Sciences with Grant Number 97156.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Ahmad Khorshidi or Mohammad Shayestehpour.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval and consent to participate

This study was approved by Ethics Committee of Kashan University of Medical Sciences (IR.KAUMS.NUHEPM.REC.1397.054).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Erko Stackebrandt.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 27 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Badie, F., Saffari, M., Moniri, R. et al. The combined effect of stressful factors (temperature and pH) on the expression of biofilm, stress, and virulence genes in Salmonella enterica ser. Enteritidis and Typhimurium. Arch Microbiol 203, 4475–4484 (2021). https://doi.org/10.1007/s00203-021-02435-y

Download citation

Keywords

  • Biofilm
  • Salmonella Enteritidis
  • Salmonella Typhimurium
  • Temperature
  • Virulence