Skip to main content
Log in

Draft genome sequencing of Sporolactobacillus terrae SBT-1, an efficient bacterium to ferment concentrated sugar to d-lactic acid

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Recently, the industrial-scale development of microbial d-lactic acid production has been discussed. In this study, the efficiency of the new isolate Sporolactobacillus terrae SBT-1 for producing d-lactic acid under challenge conditions was investigated. The isolate SBT-1 exhibited superior activity in fermenting a very high glucose or sucrose concentration to d-lactic acid compared to the other S. terrae isolates previously reported in the literature; therefore, SBT-1 could overcome the limitations of effective lactic acid production. In batch cultivation using 360 g/L glucose, SBT-1 produced 290.30 g/L d-lactate with a sufficiently high glucose conversion yield of 86%, volumetric productivity of 3.02 g/L h, and optical purity of 96.80% enantiomer excess. SBT-1 could also effectively utilize 440 g/L sucrose as a sole carbon source to produce 276.50 g/L lactic acid with a conversion yield of 90%, a production rate of 2.88 g/L h, and an optical purity of 98%. d-Lactic acid fermentation by two other related producers, S. inulinus NRIC1133T and S. terrae NRIC0357T, was compared with fermentation by isolate SBT-1. The experimental data revealed that SBT-1 possessed the ability to ferment relatively high glucose or sucrose concentrations to d-lactic acid without obvious catabolite repression and byproduct formation compared to the two reference strains. In draft genome sequencing of S. terrae SBT-1, the results provided here can promote further study to overcome the current limitations for the industrial-scale production of d-lactic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdel-Rahman MA, Sonomoto K (2016) Opportunities to overcome the current limitations and challenges for efficient microbial production of optically pure lactic acid. J Biotechnol 236:176–192. https://doi.org/10.1016/j.jbiotec.2016.08.008

    Article  CAS  PubMed  Google Scholar 

  • Amrane A, Prigent Y (1998) Lactic acid production rates during the different growth phases of Lactobacillus helveticus cultivated on whey supplemented with yeast extract. Biotechnol Lett 20(4):379–383

    Article  CAS  Google Scholar 

  • Beitel SM, Sass DC, Coelho LF, Contiero J (2016) High D(−) lactic acid levels production by Sporolactobacillus nakayamae and an efficient purification. Ann Microbiol 66(4):1367–1376. https://doi.org/10.1007/s13213-016-1224-4

    Article  CAS  Google Scholar 

  • Beitel SM, Coelho LF, Sass DC, Contiero J (2017) Environmentally friendly production of D(-) lactic acid by Sporolactobacillus nakayamae: Investigation of fermentation parameters and fed-batch strategies. Int J Microbiol. https://doi.org/10.1155/2017/4851612

    Article  Google Scholar 

  • Datta R, Henry M (2016) Lactic acid: recent advances in products, processes and technologies—a review. J Chem Technol Biotechnol 81(7):1119–1129. https://doi.org/10.1002/jctb.1486

    Article  CAS  Google Scholar 

  • Deutscher J (2008) The mechanisms of carbon catabolite repression in bacteria. Curr Opin Microbiol 11:87–93. https://doi.org/10.1016/j.mib.2008.02.007

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1981) (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1:368–376

    Article  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Gran View Research (2019) Lactic acid market size, share & trend analysis report by raw material (corn, sugarcane), by application (industrial, food & beverages, polylactic acid), by region, and segment forecasts, 2019–2025. https://www.grandviewresearch.com/industry-analysis/lactic-acid-and-poly-lactic-acid-market. Accessed 18 Nov 2020

  • Gupta B, Revagade N, Hilborn J (2007) Poly(lactic acid) fiber: an overview. Prog Polym Sci 32(4):455–482. https://doi.org/10.1016/j.progpolymsci.2007.01.005

    Article  CAS  Google Scholar 

  • Han X, Huang K, Tang H, Ni J, Liu J, Xu P, Tao F (2019) Steps toward high-performance PLA: economical production of d-lactate enabled by a newly isolated Sporolactobacillus terrae strain. Biotechnol J 14(5):e1800656. https://doi.org/10.1002/biot.201800656

    Article  CAS  PubMed  Google Scholar 

  • Huppert LA, Ramsdell TL, Chase MR, Sarracino DA, Fortune SM, Burton BM (2014) The ESX system in Bacillus subtilis mediates protein secretion. PLoS ONE 9:e96267. https://doi.org/10.1371/journal.pone.0096267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeckelmann J, Erni B (2020) Transporters of glucose and other carbohydrates in bacteria. Pflugers Arch Eur J Physiol 472:1129–1153. https://doi.org/10.1007/s00424-020-02379-0

    Article  CAS  Google Scholar 

  • Juturu V, Wu JC (2015) Microbial production of lactic acid: the latest development. Crit Rev Biotechnol 36(6):967–977. https://doi.org/10.3109/07388551.2015.1066305

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa M, Sato Y (2020) KEGG Mapper for inferring cellular functions from protein sequences. Protein Sci 29:28–35. https://doi.org/10.1002/pro.3711

    Article  CAS  PubMed  Google Scholar 

  • Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee H, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721

    Article  CAS  Google Scholar 

  • Kitahara K, Suzuki J (1963) Sporolactobacillus nov. subgen. J Gen Appl Microbiol 9:59–71

    Article  Google Scholar 

  • Klotz S, Kaufmann N, Kuenz A, Prusse U (2016) Biotechnological production of enantiomerically pure d-lactic acid. Appl Microbiol Biotechnol 100(22):9423–9437. https://doi.org/10.1007/s00253-016-7843-7

    Article  CAS  PubMed  Google Scholar 

  • Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, Edwards RA, Gerdes S, Parrello B, Shukla M, Vonstein V, Wattam AR, Xia F, Stevens R (2014) The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 42(D1):D206–D214. https://doi.org/10.1093/nar/gkt1226

    Article  CAS  PubMed  Google Scholar 

  • Papadimitriou K, Alegria A, Bron PA, de Angelis M, Gobbetti M, Kleerebezem M, Lemos JA, Linares DM, Ross P, Stanton C, Turroni F, van Sinderen D, Varmanen P, Ventura M, Zúñiga T, Kok J (2016) Stress physiology of lactic acid bacteria. Microbiol Mol Biol Rev 80(3):837–890. https://doi.org/10.1128/MMBR.00076-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasirtsak B, Thitiprasert S, Tolieng V, Assabumrungrat S, Tanasupawat S, Thongchul N (2017) Characterization of d-lactic acid, spore-forming bacteria and Terrilactibacillus laevilacticus SK5-6 as potential industrial strains. Ann Microbiol 67(11):763–778. https://doi.org/10.1007/s13213-017-1306-y

    Article  CAS  Google Scholar 

  • Reed MC, Lieb A, Nijhout HF (2010) The biological significance of substrate inhibition: a mechanism with diverse functions. Bioassays 32:422–429. https://doi.org/10.1002/bies.200900167

    Article  CAS  Google Scholar 

  • Reid SJ, Abratt VR (2005) Sucrose utilisation in bacteria: genetic organisation and regulation. Appl Microbiol Biotechnol 67(3):312–321. https://doi.org/10.1007/s00253-004-1885-y

    Article  CAS  PubMed  Google Scholar 

  • Richter M, Rosselló-Móra R, Glöckner FO, Peplies J (2016) JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics (oxford, England) 32:929–931

    Article  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  Google Scholar 

  • Syrokou MK, Paramithiotis S, Drosinos EH (2019) Lactic acid bacteria responses to osmotic challenges. In: Leblanc JG, De Leblanc ADM (eds) The many benefits of lactic acid bacteria. Nova Science Publishers, New York, pp 75–87

    Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  Google Scholar 

  • Tanasupawat S, Ezaki T, Suzuki KI, Okada S, Komagata K, Kozaki M (1992) Characterization and identification of Lactobacillus pentosus and Lactobacillus plantarum strains from fermented foods in Thailand. J Gen Appl Microbiol 38:121–134

    Article  CAS  Google Scholar 

  • Tanasupawat S, Okada S, Komagata K (1998) Lactic acid bacteria found in fermented fish in Thailand. J Gen Appl Microbiol 4:193–200

    Article  Google Scholar 

  • Thamacharoensuk T, Tolieng V, Thongchul N, Kodama K, Tanasupawat S (2016) Characterisation of lactic acid producing Sporolactobacillus strains from tree barks in Thailand. Ann Microbiol 67(2):215–218. https://doi.org/10.1007/s13213-016-1248-9

    Article  CAS  Google Scholar 

  • Thitiprasert S, Thongchul N, Tanasupawat S (2019) Spore-forming lactic acid bacteria and their abilities for utilization. In: Leblanc JG, De Leblanc ADM (eds) The many benefits of lactic acid bacteria. Nova Science Publishers, New York, pp 293–317

    Google Scholar 

  • Tonkin-Hill G, MacAlasdair N, Ruis C, Weimann A, Horesh G, Lees JA, Gladstone RA, Lo S, Beaudoin C, Floto RA, Frost SDW, Corander J, Bentley SD, Parkhill J (2020) Producing polished prokaryotic pangenomes with the Panaroo pipeline. Genome Biol 21(1):180. https://doi.org/10.1186/s13059-020-02090-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Warr SRC, Gershater CJL, Box SJ (1996) Seed stage development for improved fermentation performance: increased milbemycin production by Streptomyces hygroscopicus. J Ind Microbiol 16:295–300

    Article  CAS  Google Scholar 

  • Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T, Bun C, Conrad N, Dietrich EM, Disz T, Gabbard JL, Gerdes S, Henry CS, Kenyon RW, Machi D, Mao C, Nordberg EK, Olsen GJ, Murphy-Olson DE, Olson R, Overbeek R, Parrello B, Pusch GD, Shukla M, Vonstein V, Warren A, Xia F, Yoo H, Stevens RL (2017) Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource Center. Nucleic Acids Res 45(D1):D535–D542. https://doi.org/10.1093/nar/gkw1017

    Article  CAS  PubMed  Google Scholar 

  • Wee YG, Jin-Nam Kim JN, Ryu HW (2006) Biotechnological production of lactic acid and its recent applications. Food Technol Biotechnol 44(2):163–172

    CAS  Google Scholar 

  • Yanagida F, Suzuki K-I, Kozaki M, Komagata K (1997) Proposal of Sporolactobacillus nakayamae subsp. nakayamae sp. nov., subsp. nov., Sporolactobacillus nakayamae subsp. racemicus subsp. nov., Sporolactobacillus terrae sp. nov., Sporolactobacillus kofuensis sp. nov., and Sporolactobacillus lactosus sp. nov. Int J Syst Evol Microbiol 47(2):499–504

    Google Scholar 

  • Zhao T, Liu D, Ren H, Shi X, Zhao N, Chen Y, Ying H (2014) d-Lactic acid production by Sporolactobacillus inulinus Y2–8 immobilized in fibrous bed bioreactor using corn flour hydrolyzate. J Microbiol Biotechnol 24:1664–1672

    Article  CAS  Google Scholar 

  • Zheng L, Liu M, Sun J, Wu B, He B (2017) Sodium ions activated phosphofructokinase leading to enhanced d-lactic acid production by Sporolactobacillus inulinus using sodium hydroxide as a neutralizing agent. Appl Microbiol Biotechnol 101(9):3677–3687. https://doi.org/10.1007/s00253-017-8120-0

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Department of Molecular Microbiology, Faculty of Life Science, and NODAI Genome Research Center at Tokyo University of Agriculture (Japan) for supporting and facilitating the whole-genome sequence analysis.

Funding

This study was supported by the Biorefinery Cluster, Chulalongkorn University, Research Chair Grant provided by the National Science and Technology Development Agency (NSTDA), and Thailand Research Fund under Grant No. RTA6280014. Dr. Thitiprasert was the recipient of the Chulalongkorn University Office of International Affairs Scholarship Program for Short-term Research (Thailand).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sitanan Thitiprasert.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Communicated by Erko Stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 192 KB)

Supplementary file2 (DOCX 7922 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thitiprasert, S., Piluk, J., Tolieng, V. et al. Draft genome sequencing of Sporolactobacillus terrae SBT-1, an efficient bacterium to ferment concentrated sugar to d-lactic acid. Arch Microbiol 203, 3577–3590 (2021). https://doi.org/10.1007/s00203-021-02352-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-021-02352-0

Keywords

Navigation