Skip to main content
Log in

Comparative genomic and secretomic characterisation of endophytic Bacillus velezensis LC1 producing bioethanol from bamboo lignocellulose

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Bacillus is an excellent organic matter degrader, and it has exhibited various abilities required for lignocellulose degradation. Several B. velezensis strains encode lignocellulosases, however their ability to efficiently transform biomass has not been appreciated. In the present study, through the comparative genomic analysis of the whole genome sequences of 21 B. velezensis strains, CAZyome related to lignocellulose degradation was identified and their similarities and differences were compared. Subsequently, the secretome of B. velezensis LC1 by liquid chromatography-tandem mass spectrometry (LC–MS/MS) were identified and confirmed that a considerable number of proteins were involved in lignocellulose degradation. Moreover, after 6-day treatment, the degradation efficiency of the B. velezensis LC1 toward cellulose, hemicellulose and lignin were 59.90%, 75.44% and 23.41%, respectively, the hydrolysate was subjected to ethanol fermentation with Saccharomyces cerevisiae and Escherichia coli KO11, yielded 10.44 g/L ethanol after 96 h. These results indicate that B. velezensis LC1 has the ability to effectively degrade bamboo lignocellulose and has the potential to be used in bioethanol production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

The sequence reads from this article have been deposited at the NCBI Sequence Read Archive under the accession PRJNA574012. The assembly data set supporting the results of this article has been deposited at GenBank under the accession CP044349. The version described in this paper is CP044349.

Abbreviations

B. velezensis :

Bacillus velezensis

GH:

Glycoside Hydrolase

GT:

Glycosyltransferase

CE:

Carbohydrate esterase

CBM:

Carbohydrate binding domain

PL:

Polysaccharide lyase;

AA:

Auxiliary Activity

CAZyme:

Carbohydrate-active enzyme

ABTS:

[2,2′-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)]

BP:

Bamboo powder

YPD:

Yeast Extract Peptone Dextrose Medium

DNS:

3,5-Dinitrosalicylic acid

CDS:

Sequence coding for amino acids in protein

NCBI:

National Centre for Biotechnology Information

References

  • Adav SS, Li AA, Manavalan A, Punt P, Sze SK (2010) Quantitative iTRAQ secretome analysis of Aspergillus niger reveals novel hydrolytic enzymes. J Proteome Res 9(8):3932–3940

    Article  CAS  PubMed  Google Scholar 

  • Belbahri L, Chenari Bouket A, Rekik I, Alenezi FN, Vallat A, Luptakova L, Petrovova E, Oszako T, Cherrad S, Vacher S, Rateb ME (2017) Comparative Genomics of Bacillus amyloliquefaciens Strains Reveals a Core Genome with Traits for Habitat Adaptation and a Secondary Metabolites Rich Accessory Genome. Front Microbiol 8:1438

    Article  PubMed  PubMed Central  Google Scholar 

  • Capolupo L, Faraco V (2016) Green methods of lignocellulose pretreatment for biorefinery development. Appl Microbiol Biotechnol 100(22):9451–9467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L (2017) Complete genome sequence of Bacillus velezensis LM2303, a biocontrol strain isolated from the dung of wild yak inhabited Qinghai-Tibet plateau. J Biotechnol 251:124–127

    Article  CAS  PubMed  Google Scholar 

  • Chen TY, Wen JL, Wang B, Wang HM, Liu CF, Sun RC (2017) Assessment of integrated process based on autohydrolysis and robust delignification process for enzymatic saccharification of bamboo. Bioresour Technol 244(Pt 1):717–725

    Article  CAS  PubMed  Google Scholar 

  • Chen XH, Koumoutsi A, Scholz R, Schneider K, Vater J, Süssmuth R, Piel J, Borriss R (2009) Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens. J Biotechnol 140(1–2):27–37

    Article  CAS  PubMed  Google Scholar 

  • Crowell DN, Reznikoff WS, Raetz CR (1987) Nucleotide sequence of the Escherichia coli gene for lipid A disaccharide synthase. J Bacteriol 169(12):5727–5734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dam P, Kataeva I, Yang SJ, Zhou F, Yin Y, Chou W, Poole FL 2nd, Westpheling J, Hettich R, Giannone R, Lewis DL, Kelly R, Gilbert HJ, Henrissat B, Xu Y, Adams MW (2011) Insights into plant biomass conversion from the genome of the anaerobic thermophilic bacterium Caldicellulosiruptor bescii DSM 6725. Nucleic Acids Res 39(8):3240–3254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldman AR, Beer LA, Tang HY, Hembach P, Zayas-Bazan D, Speicher DW (2019) Proteome analysis using Gel-LC-MS/MS. Curr Protoc Protein Sci 96(1):e93

    Article  PubMed  PubMed Central  Google Scholar 

  • Gong G, Lee SM, Woo HM, Park TH, Um Y (2017) Influences of media compositions on characteristics of isolated bacteria exhibiting lignocellulolytic activities from various environmental sites. Appl Biochem Biotechnol 183(3):931–942

    Article  CAS  PubMed  Google Scholar 

  • He P, Hao K, Blom J, Rückert C, Vater J, Mao Z, Wu Y, Hou M, He P, He Y, Borriss R (2012) Genome sequence of the plant growth promoting strain Bacillus amyloliquefaciens subsp plantarum B9601–Y2 and expression of mersacidin and other secondary metabolites. J Biotechnol 164(2):281–291

    Article  CAS  PubMed  Google Scholar 

  • Huang XF, Santhanam N, Badri DV, Hunter WJ, Manter DK, Decker SR, Vivanco JM, Reardon KF (2013) Isolation and characterization of lignin-degrading bacteria from rainforest soils. Biotechnol Bioeng 110(6):1616–1626

    Article  CAS  PubMed  Google Scholar 

  • Jin Q, Jiang Q, Zhao L, Su C, Li S, Si F, Li S, Zhou C, Mu Y, Xiao M (2017) Complete genome sequence of Bacillus velezensis S3–1, a potential biological pesticide with plant pathogen inhibiting and plant promoting capabilities. J Biotechnol 259:199–203

    Article  CAS  PubMed  Google Scholar 

  • Kim SY, Lee SY, Weon HY, Sang MK, Song J (2017a) Complete genome sequence of Bacillus velezensis M75, a biocontrol agent against fungal plant pathogens, isolated from cotton waste. J Biotechnol 241:112–115

    Article  CAS  PubMed  Google Scholar 

  • Kim SY, Song H, Sang MK, Weon HY, Song J (2017b) The complete genome sequence of Bacillus velezensis strain GH1-13 reveals agriculturally beneficial properties and a unique plasmid. J Biotechnol 259:221–227

    Article  CAS  PubMed  Google Scholar 

  • Khelil O, Choubane S, Cheba BA (2016) Polyphenols content of spent coffee grounds subjected to physico-chemical pretreatments influences lignocellulolytic enzymes production by Bacillus sp. R2. Bioresour Technol 211:769–773

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Lei L, Zheng L, Xiao X, Tang H, Luo C (2020) Genome sequencing of gut symbiotic Bacillus velezensis LC1 for bioethanol production from bamboo shoots. Biotechnol Biofuels 13:34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu G, Kong Y, Fan Y, Geng C, Peng D, Sun M (2017) Whole-genome sequencing of Bacillus velezensis LS69, a strain with a broad inhibitory spectrum against pathogenic bacteria. J Biotechnol 249:20–24

    Article  CAS  PubMed  Google Scholar 

  • Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42(Database issue):D490-495

    Article  CAS  PubMed  Google Scholar 

  • Luo C, Li Y, Liao H, Yang Y (2018) De novo transcriptome assembly of the bamboo snout beetle Cyrtotrachelus buqueti reveals ability to degrade lignocellulose of bamboo feedstock. Biotechnol Biofuels 11:292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mai-Gisondi G, Maaheimo H, Chong SL, Hinz S, Tenkanen M (1861) Master E (2017) Functional comparison of versatile carbohydrate esterases from families CE1, CE6 and CE16 on acetyl-4-O-methylglucuronoxylan and acetyl-galactoglucomannan. Biochim Biophys Acta Gen Subj 9:2398–2405

    Google Scholar 

  • Mansour AA, Da Costa A, Arnaud T, Lu-Chau TA, Fdz-Polanco M, Moreira MT, Cacho Rivero JA (2016) Review of lignocellulolytic enzyme activity analyses and scale-down to microplate-based assays. Talanta 150:629–637

    Article  CAS  PubMed  Google Scholar 

  • McCarthy T, Hanniffy O, Savage A, Tuohy MG (2003) Catalytic properties and mode of action of three endo-β-glucanases from Talaromyces emersonii on soluble β-1, 4-and β-1, 3, 1, 4-linked glucans. Int J Biol Macromol 33:141–148

    Article  CAS  PubMed  Google Scholar 

  • Molinatto G, Puopolo G, Sonego P, Moretto M, Engelen K, Viti C, Ongena M, Pertot I (2016) Complete genome sequence of Bacillus amyloliquefaciens subsp. plantarum S499, a rhizobacterium that triggers plant defences and inhibits fungal phytopathogens. J Biotechnol 238:56–59

    Article  CAS  PubMed  Google Scholar 

  • Mu YY, Qi WP, Zhang T, Zhang JY, Mao SY (2021) Gene function adjustment for carbohydrate metabolism and enrichment of rumen microbiota with antibiotic resistance genes during subacute rumen acidosis induced by a high-grain diet in lactating dairy cows. J Dairy Sci 104(2):2087–2105

    Article  CAS  PubMed  Google Scholar 

  • Niazi A, Manzoor S, Asari S, Bejai S, Meijer J, Bongcam-Rudloff E (2014) Genome analysis of Bacillus amyloliquefaciens Subsp. plantarum UCMB5113: a rhizobacterium that improves plant growth and stress management. PLoS One 9(8):e104651.

  • Pan HQ, Li QL, Hu JC (2017) The complete genome sequence of Bacillus velezensis 9912D reveals its biocontrol mechanism as a novel commercial biological fungicide agent. J Biotechnol 247:25–28

    Article  CAS  PubMed  Google Scholar 

  • Pardo M, Ward M, Bains S, Molina M, Blackstock W, Gil C, Nombela C (2000) A proteomic approach for the study of Saccharomyces cerevisiae cell wall biogenesis. Electrophoresis 21(16):3396–3410

    Article  CAS  PubMed  Google Scholar 

  • See-Too WS, Chua KO, Lim YL, Chen JW, Convey P, Mohd Mohidin TB, Yin WF, Chan KG (2017) Complete genome sequence of Planococcus donghaensis JH1T, a pectin-degrading bacterium. J Biotechnol 252:11–14

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Tewari R, Rana SS, Soni R, Soni SK (2016) Cellulases: Classification, Methods of Determination and Industrial Applications. Appl Biochem Biotechnol 179(8):1346–1380

    Article  CAS  PubMed  Google Scholar 

  • Sluiter A, Hames B, Ruiz R, Scarlata C (2012) Sluiter J, Templeton D, et al. Determination of structural carbohydrates and lignin in biomass. Version 2012. National Renewable Energy Laboratory, USA.

  • Sun SN, Cao XF, Zhang XM, Xu F, Sun RC, Jones GL (2014) Characteristics and enzymatic hydrolysis of cellulose-rich fractions from steam exploded and sequentially alkali delignified bamboo (Phyllostachys pubescens). Bioresour Technol 163:377–380

    Article  CAS  PubMed  Google Scholar 

  • Teng D, Wang JH, Fan Y, Yang YL, Tian ZG, Luo J, Yang GP, Zhang F (2006) Cloning of β-1, 3–1, 4-glucanase gene from Bacillus licheniformis EGW039 (CGMCC 0635) and its expression in Escherichia coli BL21 (DE3). Appl Microbiol Biotechnol 72:705–712

    Article  CAS  PubMed  Google Scholar 

  • Thompson AJ, Speciale G, Iglesias-Fernández J, Hakki Z, Belz T, Cartmell A, Spears RJ, Chandler E, Temple MJ, Stepper J, Gilbert HJ, Rovira C, Williams SJ, Davies GJ (2015) Evidence for a boat conformation at the transition state of GH76 α-1,6-mannanases–key enzymes in bacterial and fungal mannoprotein metabolism. Angew Chem Int Ed Engl 54(18):5378–5382

    Article  CAS  PubMed  Google Scholar 

  • Torpenholt S, Le Nours J, Christensen U, Jahn M, Withers S, Ostergaard PR, Borchert TV, Poulsen JC, Lo Leggio L (2011) Activity of three β-1,4-galactanases on small chromogenic substrates. Carbohydr Res 346(13):2028–2033

    Article  CAS  PubMed  Google Scholar 

  • Vanholme B, Jacob J, Cannoot B, Gheysen G, Haegeman A (2009) Arabinogalactan endo-1,4-β-galactosidase: a putative plant cell wall-degrading enzyme of plant-parasitic nematodes. Nematology 11(5):739–747

    Article  CAS  Google Scholar 

  • Van Soest PJ, Robertson JB, Lewis BA (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 74(10):3583–3597

    Article  PubMed  Google Scholar 

  • Wi SG, Lee DS, Nguyen QA, Bae HJ (2017) Evaluation of biomass quality in short-rotation bamboo (Phyllostachys pubescens) for bioenergy products. Biotechnol Biofuels 10:127

    Article  PubMed  PubMed Central  Google Scholar 

  • Woo HL, Hazen TC, Simmons BA, DeAngelis KM (2014) Enzyme activities of aerobic lignocellulolytic bacteria isolated from wet tropical forest soils. Syst Appl Microbiol 37(1):60–67

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Bai Y, Yang P, Luo H, Huang H, Meng K, Shi P, Wang Y, Yao B (2015) A novel bifunctional GH51 exo-α-l-arabinofuranosidase/endo-xylanase from Alicyclobacillus sp. A4 with significant biomass-degrading capacity. Biotechnol Biofuels 8:197

    Article  PubMed  PubMed Central  Google Scholar 

  • Yin Y, Mao X, Yang J, Chen X, Mao F, Xu Y (2012) dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 40(Web Server issue):W445-451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan Z, Wen Y (2017) Evaluation of an integrated process to fully utilize bamboo biomass during the production of bioethanol. Bioresour Technol 236:202–211

    Article  CAS  PubMed  Google Scholar 

  • Yuan Z, Wen Y, Kapu NS (2018) Ethanol production from bamboo using mild alkaline pre-extraction followed by alkaline hydrogen peroxide pretreatment. Bioresour Technol 247:242–249

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Siika-Aho M, Tenkanen M, Viikari L (2011) The role of acetyl xylan esterase in the solubilization of xylan and enzymatic hydrolysis of wheat straw and giant reed. Biotechnol Biofuels 4(1):60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao L, Cao GL, Wang AJ, Ren HY, Dong D, Liu ZN, Guan XY, Xu CJ, Ren NQ (2012) Fungal pretreatment of cornstalk with Phanerochaete chrysosporium for enhancing enzymatic saccharification and hydrogen production. Bioresour Technol 114:365–369

    Article  CAS  PubMed  Google Scholar 

  • Zhu D, Tanabe SH, Xie C, Honda D, Sun J, Ai L (2014) Bacillus ligniniphilus sp. Nov., an alkaliphilic and halotolerant bacterium isolated from sediments of the South China Sea. Int J Syst Evol Microbiol 64(Pt 5):1712–1717

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The data were analyzed on the free online platform of Majorbio Cloud Platform (www.majorbio.com).

Funding

This work was supported by Sichuan science and technology program (2019YFG0139) and Scientific Research Foundation of Leshan Normal University (XJR19001).

Author information

Authors and Affiliations

Authors

Contributions

CBL designed and performed the experiments; HT, LZ and YQL wrote the manuscript; LZ, LL, YQL, XWY and HT analyzed the data. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Chaobing Luo.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This study does not include any experimental procedure performed on humans or animals.

Additional information

Communicated by Erko Stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, H., Zheng, L., Li, Y. et al. Comparative genomic and secretomic characterisation of endophytic Bacillus velezensis LC1 producing bioethanol from bamboo lignocellulose. Arch Microbiol 203, 3089–3099 (2021). https://doi.org/10.1007/s00203-021-02306-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-021-02306-6

Keywords

Navigation