Skip to main content
Log in

Noviherbaspirillum pedocola sp. nov., isolated from oil-contaminated experimental soil

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

An orange-coloured, rod-shaped, and aerobic bacterial strain DKR-6 T was isolated from oil-contaminated experimental soil. The strain was Gram-stain-negative, catalase and oxidase positive, and grew at temperature 10–42 °C, at pH 5.5–9.5, and at 0–3.0% (w/v) NaCl concentration. The phylogenetic analysis and 16S rRNA gene sequence analysis suggested that the strain DKR-6 T was affiliated to the genus Noviherbaspirillum, with the closest species being Noviherbaspirillum massiliense JC206T (96.3% sequence similarity). The chemotaxonomic profiles revealed the presence of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, and phosphatidylcholine as the principal polar lipids; C16:0, C17:0 cyclo, summed feature 3 (C16:1ω7c and/or C16: 1ω6c), and summed feature 8 (C18:1ω7c/or C18:1ω6c) as the main fatty acids; and Q-8 as a sole ubiquinone. The DNA G + C content was 61.6%. The polyphasic taxonomic features illustrated in this study clearly implied that strain DKR-6 T represents a novel species in the genus Noviherbaspirillum, for which the name Noviherbaspirillum pedocola sp. nov. is proposed with the type strain DKR-6 T (= KACC 22074 T = NBRC 114727 T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

KACC:

Korean agricultural culture collection

NBRC:

NITE biological resource center

DSM:

Deutsche Sammlung von Mikroorganismen

ANI:

Average nucleotide identity

References

  • Aziz RK et al (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genom 9:75

    Article  Google Scholar 

  • Blin K et al (2019) antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 47:W81–W87

    Article  CAS  Google Scholar 

  • Breznak JA, Costilow RN (2007) Physicochemical factors in growth. In: Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Synder LR (eds) Methods for General and Molecular Bacteriology, 3rd edn. American Society of Microbiology, Washinton, DC, USA, pp 309–329

    Google Scholar 

  • Chaudhary DK, Kim J (2017) Noviherbaspirillum agri sp. nov., isolated from reclaimed grassland soil, and reclassification of Herbaspirillum massiliense (Lagier et al., 2014) as Noviherbaspirillum massiliense comb. nov. Int J Syst Evol Microbiol 67:1508–1515

    Article  CAS  Google Scholar 

  • Chaudhary DK, Kim D-U, Kim D, Kim J (2019) Flavobacterium petrolei sp. nov., a novel psychrophilic, diesel-degrading bacterium isolated from oil-contaminated Arctic soil. Sci Rep 9:4134

    Article  Google Scholar 

  • Chaudhary DK, Bajagain R, Jeong S-W, Kim J (2020) Biodegradation of diesel oil and n-alkanes (C18, C20, and C22) by a novel strain Acinetobacter sp. K-6 in unsaturated soil. Environ Eng Res 25:290–298

    Article  Google Scholar 

  • Collins MD, Jones D (1981) Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 45:316–354

    Article  CAS  Google Scholar 

  • Doetsch RN (1981) Determinative methods of light microscopy. In: Gerhardt P et al (eds) Manual of Methods for General Bacteriology. American Society for Microbiology, Washington DC, USA, pp 21–33

    Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: A maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416

    Article  Google Scholar 

  • Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA, Olsen GJ (2008) Critical Evaluation of Two Primers Commonly Used for Amplification of Bacterial 16S rRNA Genes. Appl Environ Microbiol 74:2461–2470

    Article  CAS  Google Scholar 

  • Ishii S et al (2017) Noviherbaspirillum denitrificans sp. nov., a denitrifying bacterium isolated from rice paddy soil and Noviherbaspirillum autotrophicum sp. nov., a denitrifying, facultatively autotrophic bacterium isolated from rice paddy soil and proposal to reclassify Herbaspirillum massiliense as Noviherbaspirillum massiliense comb. nov. Int J Syst Evol Microbiol 67:1841–1848

    Article  CAS  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  Google Scholar 

  • Komagata K, Suzuki KI (1988) 4 Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207

    Article  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  Google Scholar 

  • Lee I, Chalita M, Ha S-M, Na S-I, Yoon S-H, Chun J (2017) ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 67:2053–2057

    Article  CAS  Google Scholar 

  • Lin S-Y et al (2013) Description of Noviherbaspirillum malthae gen. nov., sp. nov., isolated from an oil-contaminated soil, and proposal to reclassify Herbaspirillum soli, Herbaspirillum aurantiacum, Herbaspirillum canariense and Herbaspirillum psychrotolerans as Noviherbaspirillum soli comb. nov., Noviherbaspirillum aurantiacum comb. nov., Noviherbaspirillum canariense comb. nov. and Noviherbaspirillum psychrotolerans comb. nov. based on polyphasic analysis. Int J Syst Evol Microbiol 63:4100–4107

    Article  CAS  Google Scholar 

  • Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14:60

    Article  Google Scholar 

  • Minnikin DE et al (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241

    Article  CAS  Google Scholar 

  • Na SI, Kim YO, Yoon SH, Ha SM, Baek I, Chun J (2018) UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 56:280–285

    Article  CAS  Google Scholar 

  • Park Y et al (2020) Noviherbaspirillum galbum sp. Nov., a bacterium isolated from soil. Arch Microbiol. https://doi.org/10.1007/s00203-020-02076-7

    Article  PubMed  Google Scholar 

  • Pruesse E, Peplies J, Glöckner FO (2012) SINA: Accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28:1823–1829

    Article  CAS  Google Scholar 

  • Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci 106:19126–19131

    Article  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  Google Scholar 

  • Sasser M (1990) Bacterial identification by gas chromatographic analysis of fatty acid methyl esters (GC-FAME). In: MIDI Technical Note 101. Newark, DE: MIDI Inc

  • Stackebrandt E, Goebel BM (1994) Taxonomic Note: A Place for DNA-DNA Reassociation and 16S rRNA Sequence Analysis in the Present Species Definition in Bacteriology. Int J Syst Evol Microbiol 44:846–849

    Article  CAS  Google Scholar 

  • Stolz A, Busse H-J, Kämpfer P (2007) Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 57:572–576

    Article  CAS  Google Scholar 

  • Sundararaman A, Srinivasan S, Lee S-S (2016) Noviherbaspirillum humi sp. nov., isolated from soil. Antonie Van Leeuwenhoek 109:697–704

    Article  CAS  Google Scholar 

  • Tatusova T et al (2016) NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 44:6614–6624

    Article  CAS  Google Scholar 

  • Wayne LG et al (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 37:463–464

    Article  Google Scholar 

  • Xue H, Piao CG, Lin YH, Bian DR, Li Y (2020) Noviherbaspirillum aerium sp. nov., isolated from air. Int J Syst Evol Microbiol 70:6390–6395

    Article  CAS  Google Scholar 

  • Yarza P et al (2008) The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 31:241–250

    Article  CAS  Google Scholar 

  • Yoon S-H, Ha S-m, Lim J, Kwon S, Chun J (2017a) A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110:1281–1286

    Article  CAS  Google Scholar 

  • Yoon SH et al (2017b) Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613–1617

    Article  CAS  Google Scholar 

  • Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences. J Comput Biol 7:203–214

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Subsurface Environment Management Projects funded by the Korea Environmental Industry and Technology Institute, South Korea (Project Number: 2020002440005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongseok Hong.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this manuscript.

Ethical statement

This study does not describe any experimental work related to human.

Additional information

Communicated by Erko Stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The GenBank/EMBL/DDBJ accession number for the 16S rRNA sequence of strain DKR-6 T is MT776695. The whole genome shotgun sequence of strain DKR-6 T has been deposited at DDBJ/ENA/GenBank under the accession JAEPBG000000000. The version described in this paper is version JAEPBG010000000.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1204 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhary, D.K., Dahal, R.H. & Hong, Y. Noviherbaspirillum pedocola sp. nov., isolated from oil-contaminated experimental soil. Arch Microbiol 203, 3071–3076 (2021). https://doi.org/10.1007/s00203-021-02295-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-021-02295-6

Keyword

Navigation