Skip to main content

Advertisement

Log in

Overview on the role of heavy metals tolerance on developing antibiotic resistance in both Gram-negative and Gram-positive bacteria

  • Mini-Review
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Environmental health is a critical concern, continuously contaminated by physical and biological components (viz., anthropogenic activity), which adversely affect on biodiversity, ecosystems and human health. Nonetheless, environmental pollution has great impact on microbial communities, especially bacteria, which try to evolve in changing environment. For instance, during the course of adaptation, bacteria easily become resistance to antibiotics and heavy metals. Antibiotic resistance genes are now one of the most vital pollutants, provided as a source of frequent horizontal gene transfer. In this review, the environmental cause of multidrug resistance (MDR) that was supposed to be driven by either heavy metals or combination of environmental factors was essentially reviewed, especially focussed on the correlation between accumulation of heavy metals and development of MDR by bacteria. This kind of correlation was seemed to be non-significant, i.e. paradoxical. Gram-positive bacteria accumulating much of toxic heavy metal (i.e. highly stress tolerance) were unlikely to become MDR, whereas Gram-negative bacteria that often avoid accumulation of toxic heavy metal by efflux pump systems were come out to be more prone to MDR. So far, other than antibiotic contaminant, no such available data strongly support the direct influence of heavy metals in bacterial evolution of MDR; combinations of factors may drive the evolution of antibiotic resistance. Therefore, Gram-positive bacteria are most likely to be an efficient member in treatment of industrial waste water, especially in the removal of heavy metals, perhaps inducing the less chance of antibiotic resistance pollution in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abraham EP, Chain E (1940) An enzyme from bacteria able to destroy penicillin. Nature 146:837

    Article  CAS  Google Scholar 

  • Ahemad M (2012) Implications of bacterial resistance against heavy metals in bioremediation, a review. IIOABJ 3:39–46

    CAS  Google Scholar 

  • Ahluwalia SS, Goyal D (2007) Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol 98:2243–2257

    Article  CAS  PubMed  Google Scholar 

  • Ahmed S, Siddique MA, Rahman M, Bari ML, Ferdousi S (2019) A study on the prevalence of heavy metals, pesticides, and microbial contaminants and antibiotics resistance pathogens in raw salad vegetables sold in Dhaka, Bangladesh. Heliyon 5:e01205

    Article  PubMed  PubMed Central  Google Scholar 

  • Akmal M, Wang HZ, Wu JJ (2005) Changes in enzymes activity, substrate utilization pattern and diversity of soil microbial communities under cadmium pollution. J Environ Sci 17:802–807

    CAS  Google Scholar 

  • Alonso A, Sánchez P, Martínez JL (2001) Environmental selection of antibiotic resistance genes. Environ Microbiol 3:1–9

    Article  CAS  PubMed  Google Scholar 

  • Baquero F, Martinez JL, Cantón R (2008) Antibiotics and antibiotic resistance in water environments. Curr Opin Biotechnol 19:260–265

    Article  CAS  PubMed  Google Scholar 

  • Barber M (1947) Staphylococcal infection due to penicillin-resistant strains. BMJ 2:863–865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barber M, Rozwadowska-Dowzenko M (1948) Infection by penicillin-resistant staphylococci. Lancet 2:641–642

    Article  CAS  PubMed  Google Scholar 

  • Bass L, Liebert CA, Lee MD, Summers AO, White DG, Thayer SG, Maurer JJ (1999) Incidence and characterization of integrons, genetic elements mediating multiple-drug resistance, in avian Escherichia coli. Antimicrob Agents Chemother 43:2925–2929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bednorz C, Oelgeschläger K, Kinnemann B, Hartmann S, Neumann K, Pieper R et al (2013) The broader context of antibiotic resistance: zinc feed supplementation of piglets increases the proportion of multi-resistant Escherichia coli in vivo. Int J Med Microbiol 303:396–403

    Article  CAS  PubMed  Google Scholar 

  • Beveridge TJ, Murray RGE (1980) Sites of metal deposition in the cell wall of Bacillus subtilis. J Bacteriol 141:876–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhullar K, Waglechner N, Pawlowski A, Koteva K, Banks ED, Johnston MD, Barton HA, Wright GD (2012) Antibiotic resistance is prevalent in an isolated cave microbiome. PLoS ONE 7:e34953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boy-Roura M, Mas-Pla J, Petrovic M, Gros M, Soler D, Brusi D, Menció A (2018) Towards the understanding of antibiotic occurrence and transport in groundwater: findings from the Baix Fluvià alluvial aquifer (NE Catalonia, Spain). Sci Total Environ 612:1387–1406

    Article  CAS  PubMed  Google Scholar 

  • Bush K, Courvalin P, Dantas G, Davies J, Eisenstein B et al (2011) Tackling antibiotic resistance. Nat Rev Microbiol 9:894–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavicchioli R, Thomas T (2002) Extremophiles. Encyclopedia of microbiology, vol 2. Academic Press, San Diego, pp 317–337

    Google Scholar 

  • Centers for Disease Control and Prevention (2013) Antibiotic resistance threats in the United States. Centers for Disease Control and Prevention, Atlanta

    Google Scholar 

  • Chihomvu P, Stegmann P, Pillay M (2015) Characterization and Structure Prediction of Partial Length Protein Sequences of pcoA, pcoR and chrB Genes from Heavy Metal Resistant Bacteria from the Klip River, South Africa. Int J Mol Sci 16:7352–7374

    Article  Google Scholar 

  • Conejo MC, García I, Martínez LM, Picabea L, Pascual A (2003) Zinc eluted from siliconized latex urinary catheters decreases OprD expression, causing carbapenem resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 47:2313–2315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cycoń M, Mrozik A, Piotrowska-Seget Z (2019) Antibiotics in the soil environment—degradation and their impact on microbial activity and diversity. Front Microbiol 10:338

    Article  PubMed  PubMed Central  Google Scholar 

  • D’Costa VM, Osta VM, King CE, Kalan L, Morar M, Sung WWL et al (2011) Antibiotic resistance is ancient. Nature 477:457–461

    Article  PubMed  Google Scholar 

  • Davies SC, Fowler T, Watson J, Livermore DM, Walker D (2013) Annual report of the chief medical officer: infection and the rise of antimicrobial resistance. Lancet 381:1606–1609

    Article  PubMed  Google Scholar 

  • Delcour AH (2009) Outer membrane permeability and antibiotic resistance. Biochim Biophys Acta Proteins Proteom 1794:808–816

    Article  CAS  Google Scholar 

  • Diorio C, Cai J, Marmor J, Shinder R, DuBow MS (1995) An Escherichia coli chromosomal ars operon homolog is functional in arsenic detoxification and is conserved in gram-negative bacteria. J Bacteriol 177:2050–2056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixit R (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7:2189–2212

    Article  Google Scholar 

  • Doyle RJ, Matthews TH, Streips UN (1980) Chemical basis for selectivity of metal ions by the Bacillus subtilis cell wall. J Bacteriol 143:471–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drury B, Scott J, Rosi-Marshall EJ, Kelly JJ (2013) Triclosan exposure increases triclosan resistance and influences taxonomic composition of benthic bacterial communities. Environ Sci Technol 47:8923–8930

    Article  CAS  PubMed  Google Scholar 

  • Dua M, Singh A, Sethunathan N, Johri A (2002) Biotechnology and bioremediation: successes and limitations. Appl Microbiol Biotechnol 59:143–152

    Article  CAS  PubMed  Google Scholar 

  • Eichner CA, Erb RW, Timmis KN, Wagner-Dobler I (1999) Thermal gradient gel electrophoresis analysis of bioprotection from pollutant shocks in the activated sludge microbial community. Appl Environ Microb 65:102–109

    Article  CAS  Google Scholar 

  • Ellis RJ, Morgan P, Weightman AJ, Fry JC (2003) Cultivation-dependent and -independent approaches for determining bacterial diversity in heavy-metal-contaminated soil. Appl Environ Microbiol 69:3223–3230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elsgaard L, Petersen SO, Debosz K (2001) Effects and risk assessment of linear alkylbenzene sulfonates in agricultural soil: 1. Short-term effects on soil microbiology. Environ Toxicol Chem 20:l656-1663

    Google Scholar 

  • European Centre for Disease Prevention and Control Joint Report with EMEA (2011) The bacterial challange: time to react. https://ecdc.europa.eu/en/publications-data/ecdcemea-joint-technical-report-bacterial-challenge-time-react. Accessed on 5 Jan 2019

  • Figueiredo R, Card RM, Nunez-Garcia J, Mendonc N, Jorge da Silva G, Anjum MF (2018) Multidrug-resistant Salmonella enterica isolated from food animal and foodstuff may also be less susceptible to heavy metals. Foodborne Pathog Dis 16:166–172

    Article  PubMed  Google Scholar 

  • Finland M (1979) Emergence of antibiotic resistance in hospitals, 1935–1975. Rev Infect Dis 1:4–22

    Article  CAS  PubMed  Google Scholar 

  • Finley RL, Collignon P, Larsson DGJ, McEwen SA, Li XZ, Gaze WH et al (2013) The scourge of antibiotic resistance: the important role of the environment. Clin Infect Dis 57:704–710

    Article  PubMed  Google Scholar 

  • Fleming A (1929) On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae. Bri J Exp Pathol 10:226

    CAS  Google Scholar 

  • Frostegård Å, Tunlid A, Bååth E (1993) Phospholipid fatty acid composition, biomass and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Appl Environ Microbiol 59:3605–3617

    Article  PubMed  PubMed Central  Google Scholar 

  • Gadd GM (1993) Interactions of fungi with toxic metals. New Phytol 124:25–60

    Article  CAS  Google Scholar 

  • Gans J, Wolinsky M, Dunbar J (2005) Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309:1387–1390

    Article  CAS  PubMed  Google Scholar 

  • Gaynes R (2017) The discovery of penicillin—new insights after more than 75 years of clinical use. Emerg Infect Dis 23:849

    Article  PubMed Central  Google Scholar 

  • Gaze WH, Abdouslam N, Hawkey PM, Wellington EMH (2005) Incidence of class 1 integrons in a quaternary ammonium compound-polluted environment. Antimicrob Agents Chemother 49:1802–1807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gullberg E, Cao S, Berg OG, Ilbäck C, Sandegren L, Hughes D, Andersson DI (2011) Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathog 7:e1002158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasman H, Aarestrup FM (2005) Relationship between copper, glycopeptide, and macrolide resistance among Enterococcus faecium strains isolated from pigs in Denmark between 1997 and 2003. Antimicrob Agents Chemother 49:454–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawkey PM (2015) Multidrug-resistant gram-negative bacteria: a product of globalization. J Hosp Infect 89:241–247

    Article  CAS  PubMed  Google Scholar 

  • Hayashi S, Abe M, Kimoto M, Furukawa S, Nakazawa T (2000) The DsbA–DsbB disulfide bond formation system of Burkholderia cepacia is involved in the production of protease and alkaline phosphatase, motility, metal resistance, and multi-drug resistance. Microbiol Immunol 44:41–50

    Article  CAS  PubMed  Google Scholar 

  • Henriksson PJG, Rico A, Troell M, Klinger DH, Buschmann AH, Saksida S, Chadag MV, Zhang W (2018) Unpacking factors influencing antimicrobial use in global aquaculture and their implication for management: a review from a systems perspective. Sustain Sci 13:1105–1120

    Article  PubMed  Google Scholar 

  • Henriques I, Marta T, Leite L, Fidalgo C, Araújo S, Oliveira C, Alves A (2016) Co-selection of antibiotic and metal(loid) resistance in gram-negative epiphytic bacteria from contaminated salt marshes. Mar Pollut Bull 109:427–434

    Article  CAS  PubMed  Google Scholar 

  • Hrynkiewicz K, Baum C (2014) Application of microorganisms in bioremediation of environment from heavy metals. Environmental deterioration and human health book. Springer, Berlin, pp 215–227

    Chapter  Google Scholar 

  • Hussein H, Ibrahim SF, Kandeel K, Moawa H (2004) Biosorption of heavy metals from waste water using Pseudomonas sp. Electronic J Biotechnol 7:1

    Article  Google Scholar 

  • Ivshina IB, Kostina LV, Kamenskikh TN, Zhuikova VA, Zhuikova TV, Bezel VS (2014) Soil microbiocenosis as an indicator of stability of meadow communities in the environment polluted with heavy metals. Russ J Ecol 45:83–89

    Article  CAS  Google Scholar 

  • Jasmine R, Venkadesan B, Ragul K (2012) Identification and characterization of heavy metal-resistant Pseudomonas aeruginosa and its potential for bioremediation. Am J Pharm Tech Res 2:783–787

    Google Scholar 

  • Ji G, Silver S (1992) Regulation and expression of the arsenic resistance operon from Staphylococcus aureus plasmid pI258. J Bacteriol 174:3684–3694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jović M, Onjia A, Stanković S (2012) Toxic metal health risk by mussel consumption. Environ Chem Lett 10:69–77

    Article  Google Scholar 

  • Kang SY, Lee JU, Kim KW (2007) Biosorption of Cr (III) and Cr (VI) onto the cell surface of Pseudomonas aeruginosa. Biochem Eng J 36:54–58

    Article  Google Scholar 

  • Kang S, Nostrand JDV, Gough HL, He Z, Hazen TC, Stahl DA, Zhou J (2013) Functional gene array-based analysis of microbial communities in heavy metals-contaminated lake sediments. FEMS Microbiol Ecol 86:200–214

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Lieberman TD, Kishony R (2014) Alternating antibiotic treatments constrain evolutionary paths to multidrug resistance. Proc Natl Acad Sci USA 111:14494–14499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knapp CW, Dolfing J, Ehlert PAI, Graham DW (2010) Evidence of increasing antibiotic resistance gene abundances in archived soils since 1940. Environ Sci Technol 44:580–587

    Article  CAS  PubMed  Google Scholar 

  • Kuan WH, Hu CY, Chiang MC (2009) Treatment of As (V) and As (III) by electrocoagulation using Al and Fe electrode. Water Sci Technol 60:1341–1346

    Article  CAS  PubMed  Google Scholar 

  • Kunito T, Oyaizu H, Matsumoto S (1998) Ecology of soil heavy metal-resistant bacteria and perspective of bioremediation of heavy metal-contaminated soils. Rec Res Dev Agric Biol Chem 2:185–206

    CAS  Google Scholar 

  • Learman DR, Ahmad Z, Brookshier A, Henson MW, Hewitt V, Lis A et al (2019) Comparative genomics of 16 Microbacterium spp that tolerate multiple heavy metals and antibiotics. PeerJ 6:e6258

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee LJ, Barrett JA, Poole RK (2005) Genome wide transcriptional response of chemostat-cultured Escherichia coli to zinc. J Bacteriol 187:1124–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Letters RB (2011) Isolation of heavy metal resistant bacterial strains from the battery manufactured polluted environment. Rom Biotechnol Lett 16:102–106

    Google Scholar 

  • Li J, Richter DD, Mendoza A, Heine P (2008) Four-decade responses of soil trace elements to an aggrading old-field forest: B, Mn, Zn, Cu, and Fe. Ecology 89:2911–2923

    Article  PubMed  Google Scholar 

  • Livermore DM (2011) Discovery research: the scientific challenge of finding new antibiotics. J Antimicrob Chemother 66:1941–1944

    Article  CAS  PubMed  Google Scholar 

  • Mauldin PD, Salgado CD, Hansen IS, Durup DT, Bosso JA (2010) Attributable hospital cost and length of stay associated with health care-associated infections caused by antibiotic-resistant gram-negative bacteria. Antimicrob Agents Chemother 54:109–115

    Article  CAS  PubMed  Google Scholar 

  • Monachese M, Burton JP, Reid G (2012) Bioremediation and tolerance of humans to heavy metals through microbial processes: a potential role for probiotics. Appl Environ Microbiol 78:6397–6404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mouedhen G, Feki M, De Petris-Wery M, Ayedi HF (2009) Electrochemical removal of Cr (VI) from aqueous media using iron and aluminum as electrode materials, towards a better understanding of the involved phenomena. J Hazard Mater 168(2–3):983–991

    Article  CAS  PubMed  Google Scholar 

  • Naguib MM, Khairalla AS, El-Gendy AO, Elkhatib WF (2019) Isolation and characterization of mercury-resistant bacteria from wastewater sources in Egypt. Can J Microbiol 65:308–321

    Article  CAS  PubMed  Google Scholar 

  • Nanda M, Kumar V, Sharma DK (2019) Multimetal tolerance mechanisms in bacteria: the resistance strategies acquired by bacteria that can be exploited to ‘clean-up’ heavy metal contaminants from water. Aquat Toxicol 212:1–10

    Article  CAS  PubMed  Google Scholar 

  • Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions. Eur J Soil Sci 54:655–670

    Article  Google Scholar 

  • Nelson RE, Slayton RB, Stevens VW, Jones MM, Khader K, Rubin MA et al (2017) Attributable mortality of healthcare-associated infections due to multidrug resistant gram-negative bacteria and methicillin-resistant Staphylococcus aureus. Infect Control Hosp Epidemiol 38:848–856

    Article  PubMed  Google Scholar 

  • Nies DH (1995) The cobalt, zinc, and cadmium efflux system CzcABC from Alcaligenes eutrophus functions as a cation-proton antiporter in Escherichia coli. J Bacteriol 177:2707–2712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biot 51:730–750

    Article  CAS  Google Scholar 

  • Nowicki EM, O’Brien JP, Brodbelt JS, Trent MS (2015) Extracellular zinc induces phosphoethanolamine addition to Pseudomonas aeruginosa lipid A via the ColRS two-component system. Mol Microbiol 97:166–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perron K, Caille O, Rossier C, Van Delden C, Dumas JL, Köhler T (2004) CzcR–CzcS, a two-component system involved in heavy metal and carbapenem resistance in Pseudomonas aeruginosa. J Biol Chem 279:8761–8768

    Article  CAS  PubMed  Google Scholar 

  • Perron GG, Whyte L, Turnbaugh PJ, Goordial J, Hanage WP, Dantas G, Desai MM (2015) Functional characterization of bacteria isolated from ancient arctic soil exposes diverse resistance mechanisms to modern antibiotics. PLoS ONE 10:e0069533

    Article  PubMed  PubMed Central  Google Scholar 

  • Polti MA, Amoroso M, Abate C (2007) Chromium (VI) resistance and removal by actinomycete strains isolated from sediments. Chemosphere 67:660–667

    Article  CAS  PubMed  Google Scholar 

  • Rahim M, Ullah I, Khan A, Haris MRHM (2016) Health risk from heavy metals via consumption of food crops in the vicinity of District Shangla. J Chem Soc Pak 38:177–185

    CAS  Google Scholar 

  • Rahman Z, Singh VP (2014) Cr(VI) reduction by Enterobacter sp DU17 isolated from the tannery waste dump site and characterization of the bacterium and the Cr(VI) reductase. Int Biodeterior Biodegrad 91:97–103

    Article  CAS  Google Scholar 

  • Rajendran P, Muthukrishnan J, Gunasekaran P (2003) Microbes in heavy metal remediation. Indian J Exp Biol 41:935–944

    CAS  PubMed  Google Scholar 

  • Ramírez R (2013) The gastropod Osilinus atrataas a bioindicator of Cd, Cu, Pb and Zn contamination in the coastal waters of the Canary Islands. Chem Ecol 29:208–220

    Article  Google Scholar 

  • Rani A, Goel R (2009) Strategies for crop improvement in contaminated soils using metal-tolerant bioinoculants. In: Khan MS, Zaidi A, Musarrat J (eds) Microbial strategies for crop improvement. Springer, Berlin, pp 105–132

    Google Scholar 

  • Rizzo L, Manaia C, Merlin C, Schwartz T, Dagot C, Ploy MC, Michael I, Fatta-Kassinos D (2013) Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review. Sci Total Environ 447:345–360

    Article  CAS  PubMed  Google Scholar 

  • Röling WFM, Van Verseveld HW (2002) Natural attenuation: what does the subsurface have in store? Biodegradation 13:53–64

    Article  PubMed  Google Scholar 

  • Rossolini GM, Arena F, Pecile P, Pollini S (2014) Update on the antibiotic resistance crisis. Curr Opin Pharmacol 18:56–60

    Article  CAS  PubMed  Google Scholar 

  • Ruppe E, Woerther PL, Barbier F (2015) Mechanisms of antimicrobial resistance in Gram-negative bacilli. Ann Intensive Care 5:61

    Article  PubMed  Google Scholar 

  • Sandaa RA, Torsvik V, Enger O (2001) Influence of long-term heavy metal contamination on microbial communities in soil. Soil Biol Biochem 33:287–295

    Article  CAS  Google Scholar 

  • Schlesinger WH, Cole JJ, Finzi AC, Holland EA (2011) Introduction to coupled biogeochemical cycles. Front Ecol Environ 9:5–8

    Article  Google Scholar 

  • Sharma S (2012) Bioremediation: features, strategies and applications. Asian J Pharm Sci 2:202–213

    Google Scholar 

  • Smith JM, Feil EJ, Smith NH (2000) Population structure and evolutionary dynamics of pathogenic bacteria. BioEssays 22:1115–1122

    Article  CAS  PubMed  Google Scholar 

  • Stepanauskas R, Glenn TC, Jagoe CH, Tuckfield RC, Lindell AH, McArthur JV (2005) Elevated microbial tolerance to metals and antibiotics in metal-contaminated industrial environments. Environ Sci Technol 39:3671–3678

    Article  CAS  PubMed  Google Scholar 

  • Stepanauskas R, Glenn TC, Jagoe CH, Tuckfield RC, Lindell AH, King CJ, McArthur JV (2006) Co-selection for microbial resistance to metals and antibiotics in freshwater microcosms. Environ Microbiol 8:1510–1514

    Article  CAS  PubMed  Google Scholar 

  • Summers AO (2002) Generally overlooked fundamentals of bacterial genetics and ecology. Clin Infect Dis 34:S85–S92

    Article  CAS  PubMed  Google Scholar 

  • Summers AO, Wireman J, Vimy MJ, Lorscheider FL, Marshall B, Levy SB, Bennett S, Billard L (1993) Mercury released from dental silver fillings provokes an increase in mercury-resistant and antibiotic resistant bacteria in oral and intestinal floras of primates. Antimicrob Agents Chemother 37:825–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tacão M, Correia A, Henriques I (2012) Resistance to broad spectrum antibiotics in aquatic systems: anthropogenic activities modulate the dissemination of bla(CTX-M)-like genes. Appl Environ Microbiol 78:4134–4140

    Article  PubMed  PubMed Central  Google Scholar 

  • Torsvik V, Goksøyr J, Daae FL (1990) High diversity in DNA of soil bacteria. Appl Environ Microb 56:782–787

    Article  CAS  Google Scholar 

  • Türkmen M, Türkmen A, Tepe Y, Töre Y, Ateş A (2009) Determination of metals in fish species from Aegean and Mediterranean seas. Food Chem 113:233–237

    Article  Google Scholar 

  • Van Boeckel TP, Brower C, Gilbert M, Grenfell BT, Levin SA, Robinson TP, Teillant A, Laxminarayan R (2015) Global trends in antimicrobial use in food animals. Proc Natl Acad Sci USA 112:5649–5654

    Article  PubMed  PubMed Central  Google Scholar 

  • Veglio F, Beolchini F, Gasbarro A (1997) Biosorption of toxic heavy metals, an equilibrium study using free cells of Arthrobacter sp. Process Biochem 32:99–105

    Article  CAS  Google Scholar 

  • Verma N, Singh M (2005) Biosensors for heavy metals. Biometals 18:121–129

    Article  CAS  PubMed  Google Scholar 

  • Viti C, Pace A, Giovannetti L (2003) Characterization of Cr(VI) resistant bacteria isolated from chromium contaminated soil by tannery activity. Curr Microbiol 46:1–5

    Article  CAS  PubMed  Google Scholar 

  • Volesky B (1990) Biosorption and biosorbents. Biosorption of heavy metals. CRC Press, Florida, pp 3–44

    Google Scholar 

  • Waldron PJ, Wu L, Van Nostrand JD, Schadt CW, He Z, Watson DB, Jardine PM et al (2009) Functional gene array-based analysis of microbial community structure in groundwaters with a gradient of contaminant levels. Environ Sci Technol 43:3529–3534

    Article  CAS  PubMed  Google Scholar 

  • Wieczorek-Dąbrowska M, Tomza-Marciniak A, Pilarczyk B, Balicka-Ramisz A (2013) Roe and red deer as bioindicators of heavy metals contamination in north-western Poland. Chem Ecol 29:100–110

    Article  Google Scholar 

  • Wireman J, Liebert CA, Smith T, Summers AO (1997) Association of mercury resistance with antibiotic resistance in the Gram-negative fecal bacteria of primates. Appl Environ Microbiol 63:4494–4503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Younessi N, Safari Sinegani AA, Khodakaramian GH (2019) Detection of antibiotic resistance genes in culturable bacteria isolated from soils around mines in Hamedan. Iran Int J Environ Sci Technol 16:7643–7652

    Article  CAS  Google Scholar 

  • Zeeshanur R, Thomas L, Singh V (2019) Biosorption of heavy metals by a lead (Pb) resistant bacterium, Staphylococcus hominis strain AMB-2. J Basic Microbiol 59:477–486

    Article  Google Scholar 

  • Zhou J (2003) Microarrays for bacterial detection and microbial community analysis. Curr Opin Microbiol 6:288–294

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Xia B, Treves DS, Wu LY, Marsh TL, O’Neill RV, Palumbo AV, Tiedje JM (2002) Spatial and resource factors influencing high microbial diversity in soil. Appl Environ Microb 68:326–334

    Article  CAS  Google Scholar 

  • Zhu J, Zhanga J, Li Q, Hana T, Xieab J, Huab Y, Chaibc L (2013) Phylogenetic analysis of bacterial community composition in sediment contaminated with multiple heavy metals from the Xiangjiang River in China. Mar Pollut Bull 70:134–139

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

RB 1 is thankful to the Principal, Symsundar College, Shymsundar, Burdwan for conducting the research. Authors are also thankful to UGC-Center of Advanced Study and DST-FIST, Department of Botany, The University of Burdwan for pursuing research activities. U.H. is thankful to SRF (state-funded) for the finance assistance [Fc (Sc.)/RS/SF/BOT./2017-18/22]. A.K. is thankful to DHESTBT (WB-DBT) for providing the research fund [Memo no. 30 (Sanc.)-BT/ST/P/S&T/2G-48/2017].

Author information

Authors and Affiliations

Authors

Contributions

RB 1 and 2 adopted the idea. RB 1, UH, AK and AM collected information. RB 1, 2 wrote and all authors read and approved the final manuscript.

Corresponding author

Correspondence to Rajib Bandopadhyay.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Erko Stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 556 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, R., Halder, U., Kabiraj, A. et al. Overview on the role of heavy metals tolerance on developing antibiotic resistance in both Gram-negative and Gram-positive bacteria. Arch Microbiol 203, 2761–2770 (2021). https://doi.org/10.1007/s00203-021-02275-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-021-02275-w

Keywords

Navigation