Discovery of mosaic genomic islands in Pseudomonas spp.

Abstract

Genomic islands, defined as large clusters of genes mobilized through horizontal gene transfer, have a profound impact on evolution of prokaryotes. Recently, we developed a new program, IslandCafe, for identifying such large localized structures in bacterial genomes. A unique attribute of IslandCafe is its ability to decipher mosaic structures within genomic islands. Mosaic genomic islands have generated immense interest due to novel traits that have been attributed to such islands. To provide the Pseudomonas research community a catalogue of mosaic islands in Pseudomonas spp., we applied IslandCafe to decipher genomic islands in 224 completely sequenced genomes of Pseudomonas spp. We also performed comparative genomic analysis using BLAST to infer potential sources of distinct segments within genomic islands. Of the total 4271 genomic islands identified in Pseudomonas spp., 1036 were found to be mosaic. We also identified drug-resistant and pathogenic genomic islands and their potential donors. Our analysis provides a useful resource for Pseudomonas research community to further examine and interrogate mosaic islands in the genomes of interest and understand their role in the emergence and evolution of novel traits.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Alfano JR, Charkowski AO, Deng W, Badel JL, Petnicki-Ocwieja T, Van Dijk K et al (2000) The Pseudomonas syringae Hrp pathogenicity island has a tripartite mosaic structure composed of a cluster of type III secretion genes bounded by exchangeable effector and conserved effector loci that contribute to parasitic fitness and pathogenicity in plants. Proc Natl Acad Sci USA 97(9):4856–4861

    CAS  Article  Google Scholar 

  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    CAS  Article  Google Scholar 

  3. Ayub ND, Pettinari MJ, Méndez BS, Lopez NI (2007) The polyhydroxyalkanoate genes of a stress resistant Antarctic Pseudomonas are situated within a genomic island. Plasmid 58(3):240–248

    CAS  Article  Google Scholar 

  4. Bodelier PL, Wijlhuizen AG, Blom CW, Laanbroek HJ (1997) Effects of photoperiod on growth of and denitrification by Pseudomonas chlororaphis in the root zone of Glyceria maxima, studied in a gnotobiotic microcosm. Plant Soil 190(1):91–103

    CAS  Article  Google Scholar 

  5. Brooke JS (2012) Stenotrophomonas maltophilia: an emerging global opportunistic pathogen. Clin Microbiol Rev 25(1):2–41

    CAS  Article  Google Scholar 

  6. Buell CR, Joardar V, Lindeberg M, Selengut J, Paulsen IT, Gwinn ML et al (2003) The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000. Proc Natl Acad Sci USA 100(18):10181–10186

    CAS  Article  Google Scholar 

  7. Coenye T, Goris J, Spilker T, Vandamme P, LiPuma JJ (2002) Characterization of unusual bacteria isolated from respiratory secretions of cystic fibrosis patients and description of Inquilinus limosus gen. nov. sp. nov. J Clin Microbiol 40(6):2062–2069

    Article  Google Scholar 

  8. Demko CA, Stern RC, Doershuk CF (1998) Stenotrophomonas maltophilia in cystic fibrosis: incidence and prevalence. Pediatr Pulmonol 25(5):304–308

    CAS  Article  Google Scholar 

  9. Emerson J, Rosenfeld M, McNamara S, Ramsey B, Gibson RL (2002) Pseudomonas aeruginosa and other predictors of mortality and morbidity in young children with cystic fibrosis. Pediatr Pulmonol 34(2):91–100

    Article  Google Scholar 

  10. Fernández M, Niqui-Arroyo JL, Conde S, Ramos JL, Duque E (2012) Enhanced tolerance to naphthalene and enhanced rhizoremediation performance for Pseudomonas putida KT2440 via the NAH7 catabolic plasmid. Appl Environ Microbiol 78(15):5104–5110

    Article  Google Scholar 

  11. Funke G, Hess T, von Graevenitz A, Vandamme P (1996) Characteristics of Bordetella hinzii strains isolated from a cystic fibrosis patient over a 3-year period. J Clin Microbiol 34(4):966–969

    CAS  Article  Google Scholar 

  12. Jani M, Azad RK (2019) IslandCafe: compositional anomaly and feature enrichment assessment for delineation of genomic Islands. G3 (Bethesda) 9(10):3273–3285

    CAS  Article  Google Scholar 

  13. Jani M, Mathee K, Azad RK (2016) Identification of novel genomic islands in liverpool epidemic strain of Pseudomonas aeruginosa using segmentation and clustering. Front Microbiol 7:1210

    Article  Google Scholar 

  14. Juhas M, van der Meer JR, Gaillard M, Harding RM, Hood DW, Crook DW (2009) Genomic islands: tools of bacterial horizontal gene transfer and evolution. FEMS Microbiol Rev 33(2):376–393

    CAS  Article  Google Scholar 

  15. Klockgether J, Reva O, Larbig K, Tümmler B (2004) Sequence analysis of the mobile genome island pKLC102 of Pseudomonas aeruginosa C. J Bacteriol 186(2):518–534

    CAS  Article  Google Scholar 

  16. Koonin EV, Makarova KS, Aravind L (2001) Horizontal gene transfer in prokaryotes: quantification and classification. Annu Rev Microbiol 55(1):709–742

    CAS  Article  Google Scholar 

  17. Lalucat J, Bennasar A, Bosch R, García-Valdés E, Palleroni NJ (2006) Biology of Pseudomonas stutzeri. Microbiol Mol Biol Rev 70(2):510–547

    CAS  Article  Google Scholar 

  18. Mathee K, Narasimhan G, Valdes C, Qiu X, Matewish JM, Koehrsen M et al (2008) Dynamics of Pseudomonas aeruginosa genome evolution. Proc Natl Acad Sci USA 105(8):3100–3105

    CAS  Article  Google Scholar 

  19. Mavrodi DV, Loper JE, Paulsen IT, Thomashow LS (2009) Mobile genetic elements in the genome of the beneficial rhizobacterium Pseudomonas fluorescens Pf-5. BMC Microbiol 9(1):8

    Article  Google Scholar 

  20. Nelson KE, Weinel C, Paulsen IT, Dodson RJ, Hilbert H, Martins dos Santos V et al (2002) Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 4(12):799–808

    CAS  Article  Google Scholar 

  21. Noto MJ, Kreiswirth BN, Monk AB, Archer GL (2008) Gene acquisition at the insertion site for SCCmec, the genomic island conferring methicillin resistance in Staphylococcus aureus. J Bacteriol 190(4):1276–1283

    CAS  Article  Google Scholar 

  22. Ohara T, Itoh K (2003) Significance of Pseudomonas aeruginosa colonization of the gastrointestinal tract. Intern Med 42(11):1072–1076

    Article  Google Scholar 

  23. Osborn AM, Boltner D (2002) When phage, plasmids, and transposons collide: genomic islands, and conjugative-and mobilizable-transposons as a mosaic continuum. Plasmid 48(3):202–212

    Article  Google Scholar 

  24. Paulsen IT, Press CM, Ravel J, Kobayashi DY, Myers GS, Mavrodi DV et al (2005) Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nat Biotechnol 23(7):873–878

    CAS  Article  Google Scholar 

  25. Qiu X, Gurkar AU, Lory S (2006) Interstrain transfer of the large pathogenicity island (PAPI-1) of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 103(52):19830–19835

    CAS  Article  Google Scholar 

  26. Robson RL, Jones R, Robson RM, Schwartz A, Richardson TH (2015) Azotobacter genomes: the genome of Azotobacter chroococcum NCIMB 8003 (ATCC 4412). PLoS ONE 10(6):e0127997

    Article  Google Scholar 

  27. Savageau MA (1983) Escherichia coli habitats, cell types, and molecular mechanisms of gene control. Am Nat 122(6):732–744

    CAS  Article  Google Scholar 

  28. Schroth MN, Cho JJ, Green SK, Kominos SD (2018) Epidemiology of Pseudomonas aeruginosa in agricultural areas. J Med Microbiol 67(8):1191–1201

    Article  Google Scholar 

  29. Spilker T, Liwienski AA, LiPuma JJ (2008) Identification of Bordetella spp. in respiratory specimens from individuals with cystic fibrosis. Clin Microbiol Infect 14(5):504–506

    CAS  Article  Google Scholar 

  30. Steinegger M, Söding J (2018) Clustering huge protein sequence sets in linear time. Nat Commun 9(1):1–8

    CAS  Article  Google Scholar 

  31. Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ et al (2000) Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406(6799):959

    CAS  Article  Google Scholar 

  32. van der Meer JR, Sentchilo V (2003) Genomic islands and the evolution of catabolic pathways in bacteria. Curr Opin Biotechnol 14(3):248–254

    Article  Google Scholar 

  33. Winsor GL, Griffiths EJ, Lo R, Dhillon BK, Shay JA, Brinkman FS (2016) Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database. Nucleic Acids Res 44(D1):D646–D653

    CAS  Article  Google Scholar 

  34. Wolf A, Fritze A, Hagemann M, Berg G (2002) Stenotrophomonas rhizophila sp. nov., a novel plant-associated bacterium with antifungal properties. Int J Syst Evol Microbiol 52(6):1937–1944

    CAS  PubMed  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rajeev K. Azad.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Erko Stackebrandt.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 16041 KB)

Supplementary file2 (XLSX 649 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jani, M., Azad, R.K. Discovery of mosaic genomic islands in Pseudomonas spp.. Arch Microbiol (2021). https://doi.org/10.1007/s00203-021-02253-2

Download citation

Keywords

  • Genomic islands
  • Pseudomonas spp.
  • Genome segmentation
  • Clustering
  • Comparative genomics