Skip to main content

Advertisement

Log in

Whole genome and acid stress comparative transcriptome analysis of Lactiplantibacillus plantarum ZDY2013

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Previous study has reported that Lactiplantibacillus plantarum ZDY2013 which was screened from traditional Chinese fermented soybeans has a strong acid resistance. The purpose of this study was to uncover the genes potentially related to its genetic adaptation and probiotic profiles, based on comparative genomic and comparative transcriptome analysis. We got the basic information about L. plantarum ZDY2013 and identified genes which are related to genetic adaptation and probiotic profiles, including carbohydrate transport and metabolism, cell wall/membrane/envelope biogenesis, proteolytic enzyme systems and amino acid biosynthesis, CRISPR adaptive immunity, stress responses, ability to adhere to the host intestinal wall, exopolysaccharide (EPS) biosynthesis, and bacteriocin biosynthesis. Comparative transcriptome showed CK group (normal MRS culture L. plantarum ZDY2013) and SCL group (pH 3.0 MRS culture L. plantarum ZDY2013) had 652 significant differentially expressed genes including 310 up-regulated genes and 342 down-regulated genes. Besides that, these genes had been classified through KEGG and GO functional annotation. In addition, we also found top 20 KEGG pathways adjusted to acid stress. Then, some genes were selected to verify the transcriptome analysis and explore the mechanism of how L. plantarum ZDY2013 tolerate acid stress. We found that some genes of ABC transporter, phosphotransferase system, oxidation reduction process, membrane transporter and phosphorylation metabolism process had a significant change. These results suggested that comparative characterization of the L. plantarum ZDY2013 genome and transcriptome provided the genetic basis for further elucidating the functional mechanisms of it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Download references

Acknowledgments

We sincerely thank the Editor and reviewers for their contributions and suggestions.

Funding

This work was supported by National Natural Science foundation of China (81760102 and 31770133).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Cuixiang Wan.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Communicated by Erko Stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4440 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, L., Zhao, K., Chen, S. et al. Whole genome and acid stress comparative transcriptome analysis of Lactiplantibacillus plantarum ZDY2013. Arch Microbiol 203, 2795–2807 (2021). https://doi.org/10.1007/s00203-021-02240-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-021-02240-7

Keywords

Navigation