Skip to main content

Advertisement

Log in

Biological characteristics and salt-tolerant plant growth-promoting effects of an ACC deaminase-producing Burkholderia pyrrocinia strain isolated from the tea rhizosphere

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Plant growth-promoting rhizobacteria that produce 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase can promote plant growth and enhance abiotic stress tolerance. In this study, Burkholderia pyrrocinia strain P10, with an ACC deaminase activity of 33.01-µmol/h/mg protein, was isolated from the tea rhizosphere and identified based on morphological, biochemical, and molecular characteristics. In addition to its ACC deaminase activity at pH 5.0–9.0 and in response to 5% NaCl and 20% polyethylene glycol, strain P10 can also solubilize phosphorus compounds, produce indole-3-acetic acid, and secrete siderophores. Pot experiments revealed that strain P10 can significantly enhance peanut seedling growth under saline conditions (100- and 170-mmol/L NaCl). Specifically, it increased the fresh weight and root length of plants by 90.12% and 79.22%, respectively, compared with high-salt stress. These results provide new insights into the biological characteristics of Burkholderia pyrrocinia, which may be useful as a bio-fertilizer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

References

  • Acuña JJ, Campos M, de la Luz MM et al (2019) ACCD-producing rhizobacteria from an Andean Altiplano native plant (Parastrephia quadrangularis) and their potential to alleviate salt stress in wheat seedlings. Appl Soil Ecol 136:184–190

    Article  Google Scholar 

  • Afridi MS, Amna S et al (2019) Induction of tolerance to salinity in wheat genotypes by plant growth promoting endophytes: involvement of ACC deaminase and antioxidant enzymes. Plant Physiol Biochem 139:569–577

    Article  CAS  PubMed  Google Scholar 

  • Alexander A, Singh VK, Mishra A et al (2019) Plant growth promoting rhizobacterium Stenotrophomonas maltophilia BJ01 augments endurance against N2 starvation by modulating physiology and biochemical activities of Arachis hypogea. PLoS ONE 14(9):e0222405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alexander A, Singh VK, Mishra A (2020) Halotolerant PGPR Stenotrophomonas maltophilia BJ01 induces salt tolerance by modulating physiology and biochemical activities of Arachis hypogaea. Front Microbiol 11:568289

    Article  PubMed  PubMed Central  Google Scholar 

  • Alisi C, Lasinio GJ, Dalmastri C et al (2005) Metabolic profiling of Burkholderia cenocepacia, Burkholderia ambifaria, and Burkholderia pyrrocinia isolates from maize rhizosphere. Microb Ecol 50:385–395

    Article  CAS  PubMed  Google Scholar 

  • Ankati S, Podile AR (2019) Metabolites in the root exudates of groundnut change during interaction with plant growth promoting rhizobacteria in a strain-specific manner. J Plant Physiol 243:153057

    Article  CAS  PubMed  Google Scholar 

  • Aroumougame S, Geetha TM, Thangaraju M (2020) Exploitation of PGPR endophytic Burkholderia isolates to enhance organic agriculture. Am J BioSci 8(3):57–64

    Article  CAS  Google Scholar 

  • Arriel-Elias MT, de Carvalho Barros Côrtes MV, de Sousa TP TP et al (2019) Induction of resistance in rice plants using bioproducts produced from Burkholderia pyrrocinia BRM 32113. Environ Sci Pollut Res 26:19705–19718

    Article  CAS  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Bhise KK, Bhagwat PK, Dandge PB (2017) Plant growth-promoting characteristics of salt tolerant Enterobacter cloacae strain KBPD and its efficacy in amelioration of salt stress in Vigna radiata L. J Plant Growth Regul 36:215–226

    Article  CAS  Google Scholar 

  • Buchanan RE, Gibbons NE (1984) Bergey’s manual of determinative bacteriology (8th edition). Science Press, Beijing, pp 729–758

    Google Scholar 

  • Caballero-Mellado J, Onofre-Lemus J, Santos PEL et al (2007) The tomato rhizosphere, an environment rich in nitrogen-fixing Burkholderia species with capabilities of interest for agriculture and bioremedation. Appl Environ Microbiol 73:5308–5319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cakmakci R, Donmez MF, Erturk Y et al (2010) Diversity and metabolic potential of culturable bacteria from the rhizosphere of Turkish tea grown in acidic soils. Plant Soil 332(1/2):299–318

    Article  CAS  Google Scholar 

  • Chen Q, Hu HY, Gao M et al (2011) Screening and identification of a nitrogen fixing bacteria with 1-aminocyclopropane-1-carboxylate deaminase activity. Plant Nutr Fertil Sci 17:1515–1521

    CAS  Google Scholar 

  • Coenye T, Vandamme P (2003) Diversity and significance of Burkholderia species occupying diverse ecological niches. Environ Microbiol 5:719–729

    Article  CAS  PubMed  Google Scholar 

  • Courchesne F, Gobran GR (1997) Mineralogical variations of bulk and rhizosphere soils from a norway spruce stand. Soil Sci Soc Am J 61:1245–1249

    Article  CAS  Google Scholar 

  • Del Carmen O-M, Glick BR, Santoyo G (2020) ACC deaminase in plant growth-promoting bacteria (PGPB): an efficient mechanism to counter salt stress in crops. Microbiol Res 235:126439

    Article  Google Scholar 

  • Duca D, Lorv J, Patten CL et al (2014) Indole-3-acetic acid in plant-microbe interactions. Antonie Van Leeuwenhoek 106:85–125

    Article  CAS  PubMed  Google Scholar 

  • Duca DR, Rose DR, Glick BR (2018) Indole acetic acid overproduction transformants of the rhizobacterium Pseudomonas sp. UW4. Antonie Van Leeuwenhoek 111:1645–1660

    Article  CAS  PubMed  Google Scholar 

  • Dutta J, Handique PJ, Thakur D (2015) Assessment of culturable tea rhizobacteria isolated from tea estates of Assam, India for growth promotion in commercial tea cultivars. Front Microbiol 6:1252

    Article  PubMed  PubMed Central  Google Scholar 

  • El-Akhal MR, Rincón A, De La Peña C et al (2013) Effects of salt stress and rhizobial inoculation on growth and nitrogen fixation of three peanut cultivars. Plant Biol 15:415–421

    Article  CAS  PubMed  Google Scholar 

  • Elizabeth P, Miguel S, María MB et al (2007) Isolation and characterization of mineral phosphate-solubilizing bacteria naturally colonizing a limonitic crust in the southeastern Venezuelan region. Soil Biol Biotechnol 39:2905–2914

    Article  Google Scholar 

  • Gamalero E, Glick BR (2015) Bacterial modulation of plant ethylene levels. Plant Physiol 169:13–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39

    Article  CAS  PubMed  Google Scholar 

  • Glick BR, Penrose DM, Li JA (1998) Model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:63–68

    Article  CAS  PubMed  Google Scholar 

  • Glickmann E, Dessaux Y (1995) A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl Environ Microb 61:793–796

    Article  CAS  Google Scholar 

  • Gong AD, Zhu ZY, Lu YN et al (2019) Functional Analysis of Burkholderia pyrrocinia WY6-5 on phosphate solubilizing, antifungal and growth-promoting activity of maize. Sci Agric Sin 52:1574–1586

    Google Scholar 

  • Gupta S, Pandey S (2019) ACC deaminase producing bacteria with multifarious plant growth promoting traits alleviates salinity stress in French bean (Phaseolus vulgaris) plants. Front Microbiol 10:1506

    Article  PubMed  PubMed Central  Google Scholar 

  • Gyaneshwar P, Hirsch AM, Moulin L et al (2011) Legume-nodulating Betaproteobacteria: diversity, host range, and future prospects. Mol Plant Microbe 24:1276–1288

    Article  CAS  Google Scholar 

  • Huang XF, Zhou D, Lapsansky ER et al (2017) Mitsuaria sp. and Burkholderia sp. from Arabidopsis rhizosphere enhance drought tolerance in Arabidopsis thaliana and maize (Zea mays L.). Plant Soil 419:523–539

    Article  CAS  Google Scholar 

  • Huidrom P, Sharma GD (2014) Microbial bioremediation of pesticide residues in tea soil. Int Interdisc Res J 4:261–275

    Google Scholar 

  • Jaemsaeng R, Jantasuriyarat C, Thamchaipenet A (2018) Molecular interaction of 1-aminocyclopropane-1-carboxylate deaminase (ACCD)-producing endophytic Streptomyces sp. GMKU 336 towards salt-stress resistance of Oryza sativa L. cv KDML 105. Sci Rep 8:1950

    Article  PubMed  PubMed Central  Google Scholar 

  • Jalili F, Khavazi K, Pazira E et al (2008) Isolation and characterization of ACC deaminase-producing fluorescent pseudomonads, to alleviate salinity stress on canola (Brassica napus L.) growth. Ann Microbiol 166:667–674

    Google Scholar 

  • Ji J, Yuan D, Jin C et al (2020) Enhancement of growth and salt tolerance of rice seedlings (Oryza sativa L.) by regulating ethylene production with a novel halotolerant PGPR strain Glutamicibacter sp. YD01 containing ACC deaminase activity. Acta Physiol Plant 42:42

    Article  CAS  Google Scholar 

  • Jiang CY, Sheng XF, Qian M et al (2008) Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere 72:157–164

    Article  CAS  PubMed  Google Scholar 

  • Kang SM, Shahzad R, Bilal S et al (2019) Indole-3-acetic-acid and ACC deaminase producing Leclercia adecarboxylata M01 improves Solanum lycopersicum L. growth and salinity stress tolerance by endogenous secondary metabolites regulation. BMC Microbiol 19:80

    Article  PubMed  PubMed Central  Google Scholar 

  • Krome K, Rosenberg K, Dickler C et al (2010) Soil bacteria and protozoa affect root branching via effects on the auxin and cytokinin balance in plants. Plant Soil 328:191–201

    Article  CAS  Google Scholar 

  • Kunakom S, Eustáquio AS (2019) Burkholderia as a source of natural products. J Nat Prod 82:2018–2037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Latif KA, Ahmed HB, Elyassi A et al (2016) Indole acetic acid and ACC deaminase from endophytic bacteria improves the growth of Solarium lycopersicum. Electron J Biotechnol 19:58–64

    Google Scholar 

  • Lau ET, Tani A, Khew CY et al (2020) Plant growth-promoting bacteria as potential bioinoculants and biocontrol agents to promote black pepper plant cultivation. Microbiol Res 240:126549

    Article  CAS  PubMed  Google Scholar 

  • Lee KY, Kong HG, Choi KH et al (2011) Isolation and identification of Burkholderia pyrrocinia CH-67 to control tomato leaf mold and damping-off on crisphead lettuce and tomato. Plant Pathol J 27:59–67

    Article  Google Scholar 

  • Lemtukei D, Tamura T, Nguyen QT et al (2017) Inhibitory activity of Burkholderia sp. isolated from soil in Gotsu city, Shimane, against Magnaporthe oryzae. Adv Microbiol 7:137–148

    Article  Google Scholar 

  • Liu WH, Chen FF, Wang CE et al (2019a) Indole-3-acetic acid in Burkholderia pyrrocinia JK-SH007: enzymatic identification of the indole-3-acetamide synthesis pathway. Front Microbiol 10:2559

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu WH, Chen FF, Ye JR et al (2019b) Identification of indole-3-acetamide IAA synthesis function and its dependent. Scientia Silvae Sinicae 55:121–129

    CAS  Google Scholar 

  • Liu CJ, Du CY, Liang ZJ et al (2020) Screening and identification of phosphorus-solubilizing bacteria in tobacco rhizosphere and their antibacterial and growth-promoting effects. Chin Tob Sci 41:9-15+29

    Google Scholar 

  • Machuca A, Milagres AM (2003) Use of CAS-agar plate modified to study the effect of different variables on the siderophore production by Aspergillus. Lett Appl Microbiol 36:177–181

    Article  CAS  PubMed  Google Scholar 

  • Mahenthiralingam E, Vandamme P (2005) Taxonomy and pathogenesis of the Burkholderia cepacia complex. Chron Respir Dis 2:209–217

    Article  CAS  PubMed  Google Scholar 

  • Mahenthiralingam E, Bischof J, Byrne SK et al (2000) DNA-based diagnostic approaches for identification of Burkholderia cepacia complex, Burkholderia vietnamiensis, Burkholderia multivorans, Burkholderia stabilis, and Burkholderia cepacia genomovars I and III. J Cli Microbiol 38:3165–3173

    Article  CAS  Google Scholar 

  • Mahenthiralingam E, Baldwin A, Vandamme P (2002) Burkholderia cepacia complex infection in patients with cystic fibrosis. J Med Microbiol 51:533–538

    Article  PubMed  Google Scholar 

  • Mannaa M, Park I, Seo YS (2019) Genomic features and insights into the taxonomy, virulence, and benevolence of plant-associated Burkholderia species. Int J Mol Sci 20:121

    Article  Google Scholar 

  • Maxton A, Singh P, Masih SA (2018) ACC deaminase-producing bacteria mediated drought and salt tolerance in Capsicum annuum. J Plant Nutr 41(5):574–583

    Article  CAS  Google Scholar 

  • Misra S, Chauhan PS (2020) ACC deaminase-producing rhizosphere competent Bacillus spp. mitigate salt stress and promote Zea mays growth by modulating ethylene metabolism. 3 Biotech 10:119

    Article  PubMed  PubMed Central  Google Scholar 

  • Nascente AS, Filippi MC, Lanna AC et al (2017) Biomass, gas exchange, and nutrient contents in upland rice plants affected by application forms of microorganism growth promoters. Environ Sci Pollut Res 24:2956–2965

    Article  CAS  Google Scholar 

  • Nascimento FX, Rossi MJ, Glick BR (2018) Ethylene and 1-aminocyclopropane-1-carboxylate (ACC) in plant-bacterial interactions. Front Plant Sci 9:114

    Article  PubMed  PubMed Central  Google Scholar 

  • Onofre-Lemus J, Hernández-Lucas I, Girard L et al (2009) ACC (1-aminocyclopropane-1-carboxylate) deaminase activity, a widespread trait in Burkholderia species, and its growth-promoting effect on tomato plants. Appl Environ Microbiol 75:6581–6590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey S, Gupta S (2020) Diversity analysis of ACC deaminase producing bacteria associated with rhizosphere of coconut tree (Cocos nucifera L.) grown in Lakshadweep islands of India and their ability to promote plant growth under saline conditions. J Biotechnol 324:183–197

    Article  CAS  PubMed  Google Scholar 

  • Parke JL, Gurian SD (2001) Diversity of the Burkholderia cepacia complex and implications for risk assessment of biological control strains. Annu Rev Phytopathol 39:225–258

    Article  CAS  PubMed  Google Scholar 

  • Penrose DM, Glick BR (2003) Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol Plant 118:10–15

    Article  CAS  PubMed  Google Scholar 

  • Péret B, De Rybel B, Casimiro I et al (2009) Arabidopsis lateral root development: an emerging story. Trends Plant Sci 14:399–408

    Article  PubMed  Google Scholar 

  • Pourbabaee A, Bahmani E, Alikhani H et al (2016) Promotion of wheat growth under salt stress by halotolerant bacteria containing ACC deaminase. JAST 18:855–864

    Google Scholar 

  • Ravanbakhsh M, Sasidharan R, Voesenek LA et al (2017) ACC deaminase-producing rhizosphere bacteria modulate plant response to flooding. J Ecol 105:979–986

    Article  CAS  Google Scholar 

  • Safari D, Jamali F, Nooryazdan H et al (2018) Evaluation of ACC deaminase producing Pseudomonas fluorescens strains for their effects on seed germination and early growth of wheat under salt stress. Aust J Crop Sci 12:413–421

    Article  CAS  Google Scholar 

  • Saikia J, Sarma RK, Dhandia R et al (2018) Alleviation of drought stress in pulse crops with ACC deaminase producing rhizobacteria isolated from acidic soil of Northeast India. Sci Rep 8:3560

    Article  PubMed  PubMed Central  Google Scholar 

  • Saleem M, Arshad M, Hussain S et al (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biot 34:635–648

    Article  CAS  Google Scholar 

  • Sarkar T, Thankappan R, Kumar A et al (2014) Heterologous expression of the AtDREB1A gene in transgenic peanut-conferred tolerance to drought and salinity stresses. PLoS ONE 9:e110507

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarkar A, Ghosh PK, Pramanik K et al (2018a) A halotolerant Enterobacter sp. displaying ACC deaminase activity promotes rice seedling growth under salt stress. Res Microbiol 169:20–32

    Article  CAS  PubMed  Google Scholar 

  • Sarkar A, Pramanik K, Mitra S et al (2018b) Enhancement of growth and salt tolerance of rice seedlings by ACC deaminase-producing Burkholderia sp. MTCC 12259. J Plant Physiol 231:434–442

    Article  CAS  PubMed  Google Scholar 

  • Sawana A, Adeolu M, Gupta RS (2014) Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species. Front Genet 5:429

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmidt S, Blom JF, Pernthaler J et al (2009) Production of the antifungal compound pyrrolnitrin is quorum sensing regulated in members of the Burkholderia cepacia complex. Environ Microbiol 11:1422–1437

    Article  PubMed  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    Article  CAS  PubMed  Google Scholar 

  • Segura A, De Wit P, Preston GM (2009) Life of microbes that interact with plants. Microb Biotechnol 2:412–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sessitsch A, Coenye T, Sturz AV et al (2005) Burkholderia phytofirmans sp. nov., a novel plant-associated bacterium with plant-beneficial properties. Int J Syst Evol Microb 55:1187–1192

    Article  CAS  Google Scholar 

  • Shameer S, Prasad T (2018) Plant growth promoting rhizobacteria for sustainable agricultural paractices with special reference to biotic and abiotic stresses. Plant Growth Regul 84:603–615

    Article  CAS  Google Scholar 

  • Shan R, Amaresan N, Patel P et al (2020) Isolation and characterization of Bacillus spp. endowed with multifarious plant growth-promoting traits and their potential effect on tomato (Lycopersicon esculentum) seedlings. Arab J Sci Eng 45:4579–4587

    Article  Google Scholar 

  • Sharma S, Kulkarni J, Jha B (2016) Halotolerant rhizobacteria promote growth and enhance salinity tolerance in peanut. Front Microbiol 7:1–11

    Article  CAS  Google Scholar 

  • Singh RP, Shelke GM, Kumar A et al (2015) Biotechemistry and genetics of ACC deaminase: a weapon to “stress ethylene” produced in plants. Front Microbiol 6:937

    PubMed  PubMed Central  Google Scholar 

  • Sousa TP, Souza ACA, Côrtes MVCB et al (2017) Bioagents and silicon promoting fast early upland rice growth. Environ Sci Pollut Res 25:3657–3668

    Article  Google Scholar 

  • Sperandio EM, Vale HMM, Reis MS et al (2017) Evaluation of rhizobacteria in upland rice in Brazil: growth promotion and interaction of induced defense responses against leaf blast (Magnaporthe oryzae). Acta Physiol Plant 39:258–270

    Article  Google Scholar 

  • Storms V, van den Vreken N, Coenye T et al (2004) Polyphasic characterisation of Burkholderia cepacia-like isolates leading to the emended description of Burkholderia pyrrocinia. Syst Appl Microbiol 27:517–526

    Article  CAS  PubMed  Google Scholar 

  • Sun YL, Cheng ZY, Glick BR (2009) The presence of a 1-aminocyclopropane-1-carboxylate (ACC) deaminase deletion mutation alters the physiology of the endophytic plant growth-promoting bacterium Burkholoderia phytofirmans PsJN. FEMS Microbiol Lett 296:131–136

    Article  CAS  PubMed  Google Scholar 

  • Sun XY, Chen YC, Cao Q et al (2019) Isolation and identification of halotolerant Pseudomonas brassicacearum YZX4 and its plant growth-promoting traits. Chin J Appl Environ Biol 25:1133–1138

    Google Scholar 

  • Tagele SB, Kim SW, Lee HG et al (2019) Potential of novel sequence type of Burkholderia cenocepacia for biological control of root rot of maize (Zea mays L.) caused by Fusarium temperatum. Int J Mol Sci 20:1005

    Article  CAS  PubMed Central  Google Scholar 

  • Thakur R, Sharma KC, Gulati A et al (2017) Stress-tolerant Viridibacillus arenosi strain IHB B 7171 from tea rhizosphere as a potential broad-spectrum microbial inoculant. Indian J Microbiol 57(2):195–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiwari V, Chaturvedi AK, Mishra A et al (2015) Introgression of the SbASR-1 gene cloned from a halophyte Salicornia brachiata enhances salinity and drought endurance in transgenic groundnut (Arachis hypogaea) and acts as a transcription factor. PLoS ONE 10:e0131567

    Article  PubMed  PubMed Central  Google Scholar 

  • Vanlaere E, Lipuma JJ, Baldwin A et al (2008) Burkholderia latens sp. nov., Burkholderia diffusa sp. nov., Burkholderia arboris sp. nov., Burkholderia seminalis sp. nov. and Burkholderia metallica sp. nov., novel species within the Burkholderia cepacia complex. Int J Syst Evol Microbiol 58:1580–1590

    Article  CAS  PubMed  Google Scholar 

  • Viallard V, Poirier I, Cournoyer B et al (1998) Burkholderia graminis sp. nov., a rhizospheric Burkholderia species, and reassessment of [Pseudomonas] phenazinium, [Pseudomonas] pyrrocinia and [Pseudomonas] glathei as Burkholderia. Int J Syst Bacteriol 48:549–563

    Article  CAS  PubMed  Google Scholar 

  • Vitorino LC, Bessa LA (2017) Technological microbiology: development and applications. Front Microbiol 8:827

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang H, Han LZ (2019) Identification of four plant growth-promoting rhizobacteria isolated from tea rhizosphere. Microbil China 46(3):548–562

    Google Scholar 

  • Wang XQ, Liu AX, Guerrero A et al (2015) Occidiofungin is an important component responsible for the antifungal activity of Burkholderia pyrrocinia strain Lyc2. J Appl Microbiol 120:607–618

    Article  Google Scholar 

  • Wang XQ, Chen DX, Wang J et al (2019) Cloning and analysis of genes controlling antibacterial activities of Burkholderia pyrrocinia strain Lyc2. Curr Microbiol 76:1003–1009

    Article  CAS  PubMed  Google Scholar 

  • Xu FF, Yuan LM, Shao YF et al (2018) Effect of Enterobacter sp. FYP1101 on wheat seddling growth under salt stress. Microbiol China 45:102–110

    Google Scholar 

  • Yaish MW, Antony I, Glick BR (2015) Isolation and characterization of endophytic plant growth-promoting bacteria from date palm tree (Phoenix dactylifera L.) and their potential role in salinity tolerance. Antonie Van Leeuwenhoek 107(6):1519–1532

    Article  CAS  PubMed  Google Scholar 

  • Yang XJ, Chen XJ, Song ZQ et al (2020) Antifungal, plant growth-promoting, and mycotoxin detoxication activities of Burkholderia sp. strain XHY-12. Biotech 10:158

    CAS  Google Scholar 

  • Yoon SH, Ha SM, Kwon S et al (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 67:1613–1617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zerrouk ZI, Rahmoune B, Khelifi L et al (2019) Algerian Sahara PGPR confers maize root tolerance to salt and aluminum toxicity via ACC deaminase and IAA. Acta Physiol Plant 41:91

    Article  Google Scholar 

  • Zhang SW, Gang YT, Xu BL (2019) Mechanisms of the IAA and ACC-deaminase producing strain of Trichoderma longibrachiatum T6 in enhancing wheat seedling tolerance to NaCl stress. BMC Plant Biol 19:22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zörb C, Geilfus CM, Dietz KJ (2018) Salinity and crop yield. Plant Biol 21:31–38

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Natural Science Foundation of China (31760030), Science and Technology Planning Project of Guizhou Province (J[2018]1046), and Financial support was also obtained from the Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountains Region, Ministry of Education of Guizhou University (MOELP-201704). And we thank Liwen Bianji, Edanz Editing China (www.liwenbianji.cn/ac) for editing the English text of a draft of this manuscript.

Funding

National Natural Science Foundation of China (31760030), Science and Technology Planning Project of Guizhou Province (J[2018]1046), and Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountains Region, Ministry of Education of Guizhou University (MOELP-201704).

Author information

Authors and Affiliations

Authors

Contributions

LH is the corresponding author, HZ, YX, YL, and JZ are LH’s graduate students. LH designed the experiments and wrote the manuscript, and these four students performed the experiments. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Lizhen Han.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Communicated by Erko Stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, L., Zhang, H., Xu, Y. et al. Biological characteristics and salt-tolerant plant growth-promoting effects of an ACC deaminase-producing Burkholderia pyrrocinia strain isolated from the tea rhizosphere. Arch Microbiol 203, 2279–2290 (2021). https://doi.org/10.1007/s00203-021-02204-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-021-02204-x

Keywords

Navigation