Skip to main content

Effect of the oscillating magnetic field on airborne fungal


This study shows that some species of fungi are affected by the magnetic field, which should be taken into account in studies of airborne fungal and air quality. The aim of this paper was to evaluate the effect of the oscillating magnetic field (OMF) on the behavior of colonies of three fungi genus growth in different culture mediums. The stains were: Aspergillus niger, Cladosporium cladosporioides and Penicillium citrinum and were inoculated in 90 mm Petri dishes with: Malt Extract Agar (MEA), Sabouraud Dextrose Agar (SDA) and Czapek-Dox Agar (CDA). Was applied them OMF of 60 Hz/220 V between 1 and 5 mT during 2 h and then they were incubated 7 days to 28 °C. Colonies size (mm) every day was measured. Stimulation in the colonies size of all experimental conditions was showed; the greatest size of A. niger in MEA was notorious. It was demonstrated by statist analyze that only colonies size with 1 mT was significance respect to the control. The effect of OMF on the cellular metabolism was evidenced, as well as: less exudation and major pigmentation of P. citrinum in MEA; variation of pigmentation of A. niger and C. cladosporioides in CDA and increase of conidiogenesis of A. niger in SDA. Was concluded that the applied OMF had a major influence on size colony and mycelia pigmentation of A. niger that C. cladosporioides and P. citrinum, independently of the nutritional state according to the culture medium employed in this study.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2


  1. Anaya M, Castro M, Cobo HC (2015) Influencia del campo magnético sobre la distribución de los hongos en el aire de un local cerrado. Rev la Soc Venez Microbiol 35:47–52

    Google Scholar 

  2. Anaya M, Borrego SF, Gámez E et al (2016) Viable fungi in the air of indoor environments of the National Archive of the Republic of Cuba. Aerobiologia (Bologna) 32:513–527.

    Article  Google Scholar 

  3. Anaya M, Gámez-Espinosa E, Falco AS et al (2019) Characterization of indoor air mycobiota of two locals in a food industry. Cuba Air Qual Atmos Heal 12:797–805.

    CAS  Article  Google Scholar 

  4. Blanco R (2013) Efecto de la radiación solar y ultravioleta sobre el hongo Penicillium spp en limones mesino.

  5. Cabral T, António A, Rodrigues P, Venâncio A (2011) Effect of γ-radiation in the survival of Aspergillus parasiticus in chestnuts. In: ISM conference 01/2011, Mendoza

  6. Cabral T, António A, Rodrigues P, Cabo Verde S, Abrunhosa L, Venâncio A (2013) Effect of gamma radiation on mycotoxins solutions. In: ISM-MycoRed internation conference Europe 2013 “Global Mycotoxin Reduction Strategies”, Apulia

  7. Casadesus L, Rojas TI, Brizuela ALSA (1985) Ecología: Radiaciones ionizantes. Micología, 1st edn. ENPS-MES, La Habana, pp 444–446

    Google Scholar 

  8. Dadachova E, Casadevall A (2008) Ionizing radiation: how fungi cope, adapt, and exploit with the help of melanin. Curr Opin Microbiol 11:525–531.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Dadachova E, Bryan RA, Huang X et al (2007) Ionizing radiation changes the electronic properties of melanin and enhances the growth of melanized fungi. PLoS ONE.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Erika Paola Grijalba B, Laura Villamizar R, Alba Marina Cotes P (2009) Evaluación de la estabilidad de Paecilomyces sp. y Beauveria bassiana frente a la radiación ultravioleta. Rev Colomb Entomol 35:1–6

    Google Scholar 

  11. Górny R, Mainelis G, Wlazło A, Niesler A, Lis DO, Marzec S, Siwińska E, Łudzeń-Izbińska B, Aleksander Harkawy JK-K (2007) Viability of funga and actinomycetal spores after microwave radiation of building materials. Ann Agric Env Med 14:313–324

    Google Scholar 

  12. Gos P, Eicher B, Kohli J, Heyer W-D (1997) Extremely high frequency electromagnetic fields at low power density do not affect the division of exponential phase Saccharomyces cerevisiae cells. Bioelectromagnetics 18:142–155.;2-2

    CAS  Article  PubMed  Google Scholar 

  13. Guerrero-Beltrán J, Haro-Maza J (2013) Efecto de la radiación UV-C en frutas y verduras. J Temas Sel Ing Aliment 7:68–77

    Google Scholar 

  14. Hughes KA, Lawley B, Newsham KK (2003) Solar UV-B radiation inhibits the growth of antarctic terrestrial fungi. Appl Environ Microbiol 69:1488–1491.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Knudsen GR, Stack JP, Schuhmann SO et al (2006) Individual-based approach to modeling hyphal growth of a biocontrol fungus in soil. Phytopathology 96:1108–1115.

    CAS  Article  PubMed  Google Scholar 

  16. Manoliu A, Oprica L, Olteanu Z et al (2006) Peroxidase activity in magnetically exposed cellulolytic fungi. J Magn Magn Mater 300:e323–e326.

    CAS  Article  Google Scholar 

  17. Mier T, Toriello C, Ulloa M (2002) Medición del crecimiento de hongos filamentosos en medio sólido. In: Hongos microscópicos saprobios y parásitos. Universidad Autónoma Metropolitana-Xochimilco, División de Ciencias Biológicas y de la Salud: Universidad Nacional Autónoma de México, Instituto de Biología, 2002, Mexico, pp 34–36

  18. Morrow AC, Dunstan RH, King BV, Roberts TK (2007) Metabolic effects of static magnetic fields on streptococcus pyogenes. Bioelectromagnetics 28:439–445.

    CAS  Article  PubMed  Google Scholar 

  19. Mosso M, Ullán C, Rosa M (2002) El aire: hábitat y medio de transmisión de microorganismos. Obs Medioambient 5:375–402.

    Article  Google Scholar 

  20. Pál N (2006) The effect of low inductivity static magnetic field on some plant pathogen fungi. J Cent Eur Agric 6:167–172

    Google Scholar 

  21. Reynaga-Pena CG, Gierz G, Bartnicki-Garcia S (1997) Analysis of the role of the Spitzenkorper in fungal morphogenesis by computer simulation of apical branching in Aspergillus niger. Proc Natl Acad Sci 94:9096–9101.

    CAS  Article  PubMed  Google Scholar 

  22. Rojas-Triviño A (2011) Conceptos y Práctica Microbiología General. Universidad Nacional de Colombia, Colombia

    Google Scholar 

  23. Steinberg G (2007) Hyphal growth: a tale of motors, lipids, and the Spitzenkörper. Eukaryot Cell 6:351–360.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Stevenson RE (1988) Effect of radiation, temperature, and moisture on conidial germination of Alternaria solani. Phytopathology 78:926.

    Article  Google Scholar 

  25. Tortora Gerard J, Funke BR CC (2007) Control del crecimiento microbiano. Radiación. In: Introducción a la Microbiología, 9th edn. Médica Panamericana, Buenos Aires, pp 187–202

  26. Ulevičius V, Pečiulyte D, Plauškaite K, Špirkauskaite N (2008) Resistance of airborne fungal propagules to ultraviolet irradiation: laboratory study. Lith J Phys 48:265–273.

    CAS  Article  Google Scholar 

  27. Urán J, Eugenia M, Castañeda A et al (2008) Expresión de melanina en Paracoccidioides brasiliensis: inducción química con L-DOPA y L-epinefrina. Med UPB 27:17–24

    Google Scholar 

  28. Willocquet L, Colombet D, Rougier M et al (1996) Effects of radiation, especially ultraviolet B, on conidial germination and mycelial growth of grape powdery mildew. Eur J Plant Pathol 102:441–449.

    Article  Google Scholar 

  29. Yang CS, Heinsohn PA (2007) Sampling and analysis of indoor. John Wiley & Sons Inc, Hoboken

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Erasmo Gámez-Espinosa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Erko Stackebrandt.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Anaya, M., Gámez-Espinosa, E., Valdés, O. et al. Effect of the oscillating magnetic field on airborne fungal. Arch Microbiol 203, 2139–2145 (2021).

Download citation


  • Airborne fungal
  • Magnetic field
  • Air quality
  • Fungal physiology