Paenibacillus glycanilyticus subsp. hiroshimensis subsp. nov., isolated from leaf soil collected in Japan


Strain CCI5, an oligotrophic bacterium, was isolated from leaf soil collected in Japan. Strain CCI5 grew at temperatures between 25 °C and 43 °C (optimum temperature, 40 °C) and at pHs between 6.0 and 10.0 (optimum pH, 9.0). Its major fatty acids were anteiso-C15:0 and iso-C16:0, and menaquinone 7 was the only detected quinone system. In a phylogenetic analysis based on 16S rRNA gene sequences, strain CCI5 presented as a member of the genus Paenibacillus. Moreover, multilocus sequence analysis based on partial sequences of the atpD, dnaA, gmk, and infB genes showed that strain CCI5 tightly clustered with P. glycanilyticus DS-1T. The draft genome of strain CCI5 consisted of 6,864,972 bp with a G+C content of 50.7% and comprised 6,189 predicted coding sequences. The genome average nucleotide identity value (97.8%) between strain CCI5 and P. glycanilyticus DS-1T was below the cut-off value for prokaryotic subspecies delineation. Based on its phenotypic, chemotaxonomic, and phylogenetic features, strain CCI5 (= HUT-8145T = KCTC 43270T) can be considered as a novel subspecies within the genus Paenibacillus with the proposed name Paenibacillus glycanilyticus subsp. hiroshimensis subsp. nov.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2


  1. Akita H, Kimura ZI, Hoshino T (2019a) Pseudomonas humi sp. nov., isolated from leaf soil. Arch Microbiol 201:245–251

    CAS  Article  Google Scholar 

  2. Akita H, Matsushika A, Kimura ZI (2019b) Enterobacter oligotrophica sp. nov., a novel oligotroph isolated from leaf soil. Microbiologyopen 8:e00843

    Article  Google Scholar 

  3. Akita H, Itoiri Y, Ihara S, Takeda N, Matsushika A, Kimura ZI (2020) Deinococcus kurensis sp. nov., isolated from pond water collected in Japan. Arch Microbiol 202:1757–1762

    CAS  Article  Google Scholar 

  4. Ash C, Priest FG, Collins MD (1993) Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie Van Leeuwenhoek 64:253–260

    CAS  Article  Google Scholar 

  5. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    CAS  Article  Google Scholar 

  6. Brady C, Cleenwerck I, Venter S, Vancanneyt M, Swings J, Coutinho T (2008) Phylogeny and identification of Pantoea species associated with plants, humans and the natural environment based on multilocus sequence analysis (MLSA). Syst Appl Microbiol 31:447–460

    CAS  Article  Google Scholar 

  7. Brady C, Cleenwerck I, Venter S, Coutinho T, De Vos P (2013) Taxonomic evaluation of the genus Enterobacter based on multilocus sequence analysis (MLSA): proposal to reclassify E. nimipressuralis and E. amnigenus into Lelliottia gen. nov. as Lelliottia nimipressuralis comb. nov. and Lelliottia amnigena comb. nov., respectively, E. gergoviae and E. pyrinus into Pluralibacter gen. nov. as Pluralibacter gergoviae comb. nov. and Pluralibacter pyrinus comb. nov., respectively, E. cowanii, E. radicincitans, E. oryzae and E. arachidis into Kosakonia gen. nov. as Kosakonia cowanii comb. nov., Kosakonia radicincitans comb. nov., Kosakonia oryzae comb. nov. and Kosakonia arachidis comb. nov., respectively, and E. turicensis, E. helveticus and E. pulveris into Cronobacter as Cronobacter zurichensis nom. nov., Cronobacter helveticus comb. nov. and Cronobacter pulveris comb. nov., respectively, and emended description of the genera Enterobacter and Cronobacter. Syst Appl Microbiol 36:309–319

    Article  Google Scholar 

  8. Carro L, Flores-Félix JD, Ramírez-Bahena MH, García-Fraile P, Martínez-Hidalgo P, Igual JM, Tejedor C, Peix A, Velázquez E (2014) Paenibacillus lupini sp. nov., isolated from nodules of Lupinus albus. Int J Syst Evol Microbiol 64:3028–3033

    CAS  Article  Google Scholar 

  9. Dasman KS, Kawasaki H, Yagi M, Seki T, Fukusaki E, Kobayashi A (2002) Paenibacillus glycanilyticus sp. nov., a novel species that degrades heteropolysaccharide produced by the cyanobacterium Nostoc commune. Int J Syst Evol Microbiol 52:1669–1674

    CAS  PubMed  Google Scholar 

  10. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    CAS  Article  Google Scholar 

  11. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007) DNA–DNA hybridization values and their relationship to whole-genome sequence simi-larities. Int J Syst Evol Microbiol 57:81–91

    CAS  Article  Google Scholar 

  12. Ishida Y, Kadota H (1981) Growth patterns and substrate requirements of naturally occurring obligate oligotrophs. Microb Ecol 7:123–130

    CAS  Article  Google Scholar 

  13. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780

    CAS  Article  Google Scholar 

  14. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. John Wiley and Sons, New York, pp 115–175

    Google Scholar 

  15. Maiden MC, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R, Zhang Q, Zhou J, Zurth K, Caugant DA, Feavers IM, Achtman M, Spratt BG (1998) Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci USA 95:3140–3145

    CAS  Article  Google Scholar 

  16. Pham JV, Yilma MA, Feliz A, Majid MT, Maffetone N, Walker JR, Kim E, Cho HJ, Reynolds JM, Song MC, Park SR, Yoon YJ (2019) A review of the microbial production of bioactive natural products and biologics. Front Microbiol 10:1404

    Article  Google Scholar 

  17. Price MN, Dehal PS, Arkin AP (2009) FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 26:1641–1650

    CAS  Article  Google Scholar 

  18. Price MN, Dehal PS, Arkin AP (2010) FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS ONE 10:e9490

    Article  Google Scholar 

  19. Raveendran S, Parameswaran B, Ummalyma SB, Abraham A, Mathew AK, Madhavan A, Rebello S, Pandey A (2018) Applications of microbial enzymes in food industry. Food Technol Biotechnol 56:16–30

    CAS  Article  Google Scholar 

  20. Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106:19126–19131

    CAS  Article  Google Scholar 

  21. Sadh PK, Duhan S, Duhan JS (2018) Agro-industrial wastes and their utilization using solid state fermentation: a review. Bioresour Bioprocess 5:1

    Article  Google Scholar 

  22. Sauer M, Porro D, Mattanovich D, Branduardi P (2008) Microbial production of organic acids: expanding the markets. Trends Biotechnol 26:100–108

    CAS  Article  Google Scholar 

  23. Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069

    CAS  Article  Google Scholar 

  24. Sutton GG, Brinkac LM, Clarke TH, Fouts DE (2018) Enterobacter hormaechei subsp. hoffmannii subsp. nov., Enterobacter hormaecheisubsp. xiangfangensis comb. nov., Enterobacter roggenkampii sp. nov., and Enterobacter muelleri is a later heterotypic synonym of Enterobacter asburiae based on computational analysis of sequenced Enterobacter genomes. F1000Res 7:521

    Article  Google Scholar 

  25. Tritt A, Eisen JA, Facciotti MT, Darling AE (2012) An integrated pipeline for de novo assembly of microbial genomes. PLoS ONE 7:e42304

    CAS  Article  Google Scholar 

  26. Turner S, Pryer KM, Miao VP, Palmer JD (1999) Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J Eukaryot Microbiol 46:327–338

    CAS  Article  Google Scholar 

  27. Yoon SH, Ha SM, Lim J, Kwon S, Chun J (2017) A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110:1281–1286

    CAS  Article  Google Scholar 

  28. Zhang J, Wang ZT, Yu HM, Ma Y (2013) Paenibacillus catalpae sp. nov., isolated from the rhizosphere soil of Catalpa speciosa. Int J Syst Evol Microbiol 63:1776–1781

    CAS  Article  Google Scholar 

Download references


We are grateful to all members of the Bio-conversion Research Group at our Institute [Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST)] for their technical assistance and valuable discussion. This work was supported by grants from JSPS KAKENHI to H. Akita (19K15743).

Author information



Corresponding author

Correspondence to Hironaga Akita.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Erko Stackebrandt.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Akita, H., Itoiri, Y., Takeda, N. et al. Paenibacillus glycanilyticus subsp. hiroshimensis subsp. nov., isolated from leaf soil collected in Japan. Arch Microbiol (2021).

Download citation


  • Paenibacillus glycanilyticus
  • Subspecies
  • 16S rRNA gene
  • Genome sequence
  • Multilocus sequence analysis
  • Average nucleotide identity value analysis