Heavy-metal resistance mechanisms developed by bacteria from Lerma–Chapala basin

Abstract

Heavy-metal (HM) contamination is a huge environmental problem in many countries including Mexico. Currently, microorganisms with multiple heavy-metal resistance and/or plant-promoting characteristics have been widely used for bioremediation of HM-contaminated soils. The aim of the study was isolated bacteria with multiple heavy-metal resistance and to determinate the resistance mechanism developed by these organisms. A total of 138 aerobic bacteria were isolated from soil and sediments surrounding the Lerma–Chapala basin located in the boundary of the States of Michoacán and Jalisco states of Mexico. One hundred and eight strains showed at least 1 plant growth-promoting features. The Lerma–Chapala basin bacteria were also resistant to high concentrations of HMs including the metalloid arsenic. Sequence analysis of 16S RNA genes reveled that these bacteria were mainly affiliated to the phyla Proteobacteria (38%), Firmicutes (31%) and Actinobacteria (25%), covering 21 genera with Bacillus as the most abundant one. Among them, at least 27 putative novel species were detected in the genera Acinetobacter, Arthrobacter, Bacillus, Agrobacterium, Dyadobacter, Enterobacter, Exiguobacterium, Kluyvera, Micrococcus, Microbacterium and Psychrobacter. In addition, these bacteria developed various heavy-metal-resistance mechanisms, such as biosorption/bioaccumulation, immobilization and detoxification. Therefore, the bacteria isolated from soils and sediments of Lerma–Chapala basin could be used in bioremediation strategies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Agami RA, Mohamed GF (2013) Exogenous treatment with indole-3-acetic acid and salicylic acid alleviates cadmium toxicity in wheat seedlings. Ecotoxicol Environ Saf 94:164–171. https://doi.org/10.1016/j.ecoenv.2013.04.013

    CAS  Article  PubMed  Google Scholar 

  2. Alexander DB, Zuberer DA (1991) Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol Fertil soils 12:39–45

    CAS  Article  Google Scholar 

  3. Ayangbenro AS, Babalola OO (2017) A new strategy for heavy metal polluted environments: A review of microbial biosorbents. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph14010094

    Article  PubMed  PubMed Central  Google Scholar 

  4. Benidire L, Pereira SIA, Castro PML, Boularbah A (2016) Assessment of plant growth promoting bacterial populations in the rhizosphere of metallophytes from the Kettara mine, Marrakech. Environ Sci Pollut Res 23:21751–21765. https://doi.org/10.1007/s11356-016-7378-6

    CAS  Article  Google Scholar 

  5. Berraquero FR, Baya AM, Cormenzana AR (1976) Establecimiento de índices para el estudio de la solubilización de fosfatos por bacterias del suelo. Ars Pharm 17:399–406

    Google Scholar 

  6. Bondarczuk K, Piotrowska-Seget Z (2013) Molecular basis of active copper resistance mechanisms in gram-negative bacteria. Cell Biol Toxicol 29:397–405. https://doi.org/10.1007/s10565-013-9262-1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Branco R, Alpoim MC, Morais PV (2004) Ochrobactrum tritici strain 5bvl1-characterization of a Cr(VI)-resistant and Cr(VI)-reducing strain. Can J Microbiol 50:697–703. https://doi.org/10.1139/w04-048

    CAS  Article  PubMed  Google Scholar 

  8. Brown NL, Rouch DA, Lee BTO (1992) Copper resistance determinants in bacteria. Plasmid 27:41–51. https://doi.org/10.1016/0147-619X(92)90005-U

    CAS  Article  PubMed  Google Scholar 

  9. Bruins MR, Kapil S, Oehme FW (2000) Microbial resistance to metals in the environment. Ecotoxicol Environ Saf 45:198–207. https://doi.org/10.1006/eesa.1999.1860

    CAS  Article  PubMed  Google Scholar 

  10. Campanella JJ, Bitincka L, Smalley J (2003) MatGAT: an application that generates similarity/identity matrices using protein or DNA sequences. BMC Bioinform 4:1–4. https://doi.org/10.1186/1471-2105-4-29

    Article  Google Scholar 

  11. Carlos MHJ, Stefani PVY, Janette AM et al (2016) Assessing the effects of heavy metals in ACC deaminase and IAA production on plant growth-promoting bacteria. Microbiol Res 188–189:53–61. https://doi.org/10.1016/j.micres.2016.05.001

    CAS  Article  PubMed  Google Scholar 

  12. Chun J, Lee JH, Jung Y et al (2007) EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261. https://doi.org/10.1099/ijs.0.64915-0

    CAS  Article  PubMed  Google Scholar 

  13. Etesami H (2018) Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: mechanisms and future prospects. Ecotoxicol Environ Saf 147:175–191. https://doi.org/10.1016/j.ecoenv.2017.08.032

    CAS  Article  PubMed  Google Scholar 

  14. Fasim F, Ahmed N, Parsons R, Gadd GM (2002) Solubilization of zinc salts by a bacterium isolated from the air environment of a tannery. FEMS Microbiol Lett 213:1–6. https://doi.org/10.1016/S0378-1097(02)00725-5

    CAS  Article  PubMed  Google Scholar 

  15. Ford TE, Ika R, Shine J et al (2000) Trace metal concentrations in Chirostoma sp. from Lake Chapala, Mexico: elevated concentrations of mercury and public health implications. J Environ Sci Heal-Part A Toxic/Hazardous Subst Environ Eng 35:313–325. https://doi.org/10.1080/10934520009376973

    Article  Google Scholar 

  16. Galtier N, Guoy M, Gautier C (1996) SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogenies. Bioinform 12:543

    CAS  Article  Google Scholar 

  17. Gavrilescu M (2004) Removal of heavy metals from the environment by biosorption. Eng Life Sci 4:219–232. https://doi.org/10.1002/elsc.200420026

    CAS  Article  Google Scholar 

  18. Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374. https://doi.org/10.1016/j.biotechadv.2010.02.001

    CAS  Article  PubMed  Google Scholar 

  19. Glickmann E, Dessaux Y (1995) A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl Environ Microbiol 61:793–796

    CAS  Article  Google Scholar 

  20. Guillén-Jiménez FDM, Morales-Barrera L, Morales-Jiménez J et al (2008) Modulation of tolerance to Cr(VI) and Cr(VI) reduction by sulfate ion in a Candida yeast strain isolated from tannery waste water. J Ind Microbiol Biotechnol 35:1277–1287. https://doi.org/10.1007/s10295-008-0425-7

    CAS  Article  Google Scholar 

  21. Gupta A, Joia J (2016) Microbes as potential tool for remediation of heavy metals: a review. J Microb Biochem Technol 8:364–372. https://doi.org/10.4172/1948-5948.1000310

    CAS  Article  Google Scholar 

  22. Hansen AM, van Afferden M (2001) Toxic substances. The Lerma-Chapala Watershed. Springer, Boston, MA, pp 95–121

    Google Scholar 

  23. He LY, Zhang YF, Ma HY et al (2010) Characterization of copper-resistant bacteria and assessment of bacterial communities in rhizosphere soils of copper-tolerant plants. Appl Soil Ecol 44:49–55. https://doi.org/10.1016/j.apsoil.2009.09.004

    Article  Google Scholar 

  24. Hemme CL, Deng Y, Gentry TJ et al (2010) Metagenomic insights into evolution of a heavy metal-contaminated groundwater microbial community. ISME J 4:660–672. https://doi.org/10.1038/ismej.2009.154

    CAS  Article  PubMed  Google Scholar 

  25. Hernández A, Mellado RP, Martínez JL (1998) Metal accumulation and vanadium-induced multidrug resistance by environmental isolates of Escherichia hermannii and Enterobacter cloacae. Appl Environ Microbiol 64:4317–4320

    Article  Google Scholar 

  26. Hoffman CS, Winston F (1987) A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformaion of Escherichia coli. Gene 57:267–272. https://doi.org/10.1016/0378-1119(87)90131-4

    CAS  Article  PubMed  Google Scholar 

  27. Huang Y, Chen Q, Deng M et al (2018) Heavy metal pollution and health risk assessment of agricultural soils in a typical peri-urban area in southeast China. J Environ Manag 207:159–168. https://doi.org/10.1016/j.jenvman.2017.10.072

    CAS  Article  Google Scholar 

  28. Hussain A, Arshad M, Zahir ZA, Asghar M (2015) Prospects of zinc solubilizing bacteria for enhancing growth of maize. Pakistan J Agric Sci 52:915–922

    Google Scholar 

  29. Jain DK, Patriquin DG (1985) Characterization of a substance produced by Azospirillum which causes branching of wheat root hairs. Can J Microbiol 31:206–210. https://doi.org/10.1139/m85-039

    Article  Google Scholar 

  30. Jay JA, Ford TE (2001) Water concentrations, bioaccumulation, and human health implications of heavy metals in lake Chapala. Lerma-Chapala Watershed. https://doi.org/10.1007/978-1-4615-0545-7_5

    Article  Google Scholar 

  31. Jia M-R, Tang N, Cao Y et al (2019) Efficient arsenate reduction by As-resistant bacterium Bacillus sp. strain PVR-YHB1-1: characterization and genome analysis. Chemosphere 218:1061–1070

    CAS  Article  Google Scholar 

  32. Joutey NT, Sayel H, Bahafid W, El Ghachtouli N (2015) Mechanisms of hexavalent chromium resistance and removal by microorganisms. In: Reviews of environmental contamination and toxicology. Volume 233. Springer, pp 45–69

  33. Kang CH, Kwon YJ, So JS (2016) Bioremediation of heavy metals by using bacterial mixtures. Ecol Eng 89:64–69. https://doi.org/10.1016/j.ecoleng.2016.01.023

    Article  Google Scholar 

  34. Khatri N, Tyagi S (2015) Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas. Front Life Sci 8:23–39

    CAS  Article  Google Scholar 

  35. Kraepiel AML, Bellenger JP, Wichard T, Morel FMM (2009) Multiple roles of siderophores in free-living nitrogen-fixing bacteria. Biometals 22:573–581. https://doi.org/10.1007/s10534-009-9222-7

    CAS  Article  PubMed  Google Scholar 

  36. Kwok CK, Liang Y, Wang H et al (2014) Bioaccumulation of heavy metals in fish and Ardeid at Pearl River Estuary, China. Ecotoxicol Environ Saf 106:62–67. https://doi.org/10.1016/j.ecoenv.2014.04.016

    CAS  Article  PubMed  Google Scholar 

  37. Lara P, Morett E, Juárez K (2017) Acetate biostimulation as an effective treatment for cleaning up alkaline soil highly contaminated with Cr(VI). Environ Sci Pollut Res 24:25513–25521. https://doi.org/10.1007/s11356-016-7191-2

    CAS  Article  Google Scholar 

  38. Larkin MA, Blackshields G, Brown NP et al (2007) Clustal W and clustal X version 2.0. Bioinform 23:2947–2948. https://doi.org/10.1093/bioinformatics/btm404

    CAS  Article  Google Scholar 

  39. Layton AC, Chauhan A, Williams DE et al (2014) Metagenomes of microbial communities in arsenic- and pathogen-contaminated well and surface water from Bangladesh. Genome Announc 2:5–6. https://doi.org/10.1128/genomeA.01170-14

    Article  Google Scholar 

  40. Li WW, Yu HQ (2014) Insight into the roles of microbial extracellular polymer substances in metal biosorption. Bioresour Technol 160:15–23. https://doi.org/10.1016/j.biortech.2013.11.074

    CAS  Article  PubMed  Google Scholar 

  41. Lim SR, Schoenung JM (2010) Human health and ecological toxicity potentials due to heavy metal content in waste electronic devices with flat panel displays. J Hazard Mater 177:251–259. https://doi.org/10.1016/j.jhazmat.2009.12.025

    CAS  Article  PubMed  Google Scholar 

  42. Lin Y, Wang X, Wang B et al (2012) Bioaccumulation characterization of zinc and cadmium by Streptomyceszinciresistens, a novel actinomycete. Ecotoxicol Environ Saf 77:7–17. https://doi.org/10.1016/j.ecoenv.2011.09.016

    CAS  Article  PubMed  Google Scholar 

  43. Lukasz D, Liwia R, Aleksandra M, Aleksandra S (2014) Dissolution of arsenic minerals mediated by dissimilatory arsenate reducing bacteria: estimation of the physiological potential for arsenic mobilization. Biomed Res Int. https://doi.org/10.1155/2014/841892

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ma Y, Prasad MNV, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248–258. https://doi.org/10.1016/j.biotechadv.2010.12.001

    CAS  Article  PubMed  Google Scholar 

  45. Ma Y, Rajkumar M, Rocha I et al (2015) Serpentine bacteria influence metal translocation and bioconcentration of Brassica juncea and Ricinus communis grown in multi-metal polluted soils. Front Plant Sci 5:1–14. https://doi.org/10.3389/fpls.2014.00757

    Article  Google Scholar 

  46. Malaviya P, Singh A (2016) Bioremediation of chromium solutions and chromium containing wastewaters. Crit Rev Microbiol 42:607–633. https://doi.org/10.3109/1040841X.2014.974501

    CAS  Article  PubMed  Google Scholar 

  47. Mallick I, Hossain ST, Sinha S, Mukherjee SK (2014) Brevibacillus sp. KUMAs2, a bacterial isolate for possible bioremediation of arsenic in rhizosphere. Ecotoxicol Environ Saf 107:236–244. https://doi.org/10.1016/j.ecoenv.2014.06.007

    CAS  Article  PubMed  Google Scholar 

  48. Marzluf GA (1970) Genetic and metabolic controls for sulfate metabolism in Neurospora crassa: isolation and study of chromate-resistant and sulfate transport-negative mutants. J Bacteriol 102:716–721

    CAS  Article  Google Scholar 

  49. Menna P, Hungria M, Barcellos FG et al (2006) Molecular phylogeny based on the 16S rRNA gene of elite rhizobial strains used in Brazilian commercial inoculants. Syst Appl Microbiol 29:315–332. https://doi.org/10.1016/j.syapm.2005.12.002

    CAS  Article  PubMed  Google Scholar 

  50. Mestre JE (1997) Integrated approach to river basin management: Lerma-chapala case study—attributions and experiences in water management in Mexico. Water Int 22:140–152. https://doi.org/10.1080/02508069708686693

    Article  Google Scholar 

  51. Mishra J, Singh R, Arora NK (2017) Alleviation of heavy metal stress in plants and remediation of soil by rhizosphere microorganisms. Front Microbiol 8:1–7. https://doi.org/10.3389/fmicb.2017.01706

    CAS  Article  Google Scholar 

  52. Mishra V, Gupta A, Kaur P et al (2016) Synergistic effects of Arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria in bioremediation of iron contaminated soils. Int J Phytoremediation 18:697–703. https://doi.org/10.1080/15226514.2015.1131231

    CAS  Article  PubMed  Google Scholar 

  53. Mumtaz MZ, Ahmad M, Jamil M, Hussain T (2017) Zinc solubilizing Bacillus spp. potential candidates for biofortification in maize. Microbiol Res 202:51–60. https://doi.org/10.1016/j.micres.2017.06.001

    CAS  Article  PubMed  Google Scholar 

  54. Naik MM, Dubey SK (2013) Lead resistant bacteria: lead resistance mechanisms, their applications in lead bioremediation and biomonitoring. Ecotoxicol Environ Saf 98:1–7. https://doi.org/10.1016/j.ecoenv.2013.09.039

    CAS  Article  PubMed  Google Scholar 

  55. Nair A, Juwarkar AA, Singh SK (2007) Production and characterization of siderophores and its application in arsenic removal from contaminated soil. Water Air Soil Pollut 180:199–212. https://doi.org/10.1007/s11270-006-9263-2

    CAS  Article  Google Scholar 

  56. Nautiyal CS (1999) An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170:265–270

    CAS  Article  Google Scholar 

  57. Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750

    CAS  Article  Google Scholar 

  58. Nies DH (2000) Heavy metal-resistant bacteria as extremophiles: molecular physiology and biotechnological use of Ralstonia sp. CH34. Extremophiles 4:77–82

    CAS  Article  Google Scholar 

  59. Ohtake H, Cervantes C, Silver S (1987) Decreased chromate uptake in Pseudomonasfluorescens carrying a chromate resistance plasmid. J Bacteriol 169:3853–3856

    CAS  Article  Google Scholar 

  60. Olaniran A, Balgobind A, Pillay B (2013) Bioavailability of heavy metals in soil: impact on microbial biodegradation of organic compounds and possible improvement strategies. Int J Mol Sci 14:10197–10228

    Article  Google Scholar 

  61. Ontiveros-Cuadras JF, Ruiz-Fernández AC, Sanchez-Cabeza JA et al (2014) Trace element fluxes and natural potential risks from 210Pb-dated sediment cores in lacustrine environments at the central Mexican Plateau. Sci Total Environ 468:677–687

    Article  Google Scholar 

  62. Ortuzar M, Trujillo ME, Román-Ponce B, Carro L (2020) Micromonospora metallophores: a plant growth promotion trait useful for bacterial-assisted phytoremediation? Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2020.139850

    Article  PubMed  Google Scholar 

  63. Pande A, Pandey P, Mehra S et al (2017) Phenotypic and genotypic characterization of phosphate solubilizing bacteria and their efficiency on the growth of maize. J Genet Eng Biotechnol 15:379–391

    Article  Google Scholar 

  64. Paul D, Sinha SN (2017) Isolation and characterization of phosphate solubilizing bacterium Pseudomonas aeruginosa KUPSB12 with antibacterial potential from river Ganga, India. Ann Agrar Sci 15:130–136. https://doi.org/10.1016/j.aasci.2016.10.001

    Article  Google Scholar 

  65. Paul S, Bera D, Chattopadhyay P, Ray L (2006) Biosorption of Pb(II) by Bacilluscereus M1 16 immobilized in calcium alginate gel. J Hazard Subst Res. https://doi.org/10.4148/1090-7025.1032

    Article  Google Scholar 

  66. Pepi M, Baldi F (1992) Modulation of chromium (VI) toxicity by organic and inorganic sulfur species in yeasts from industrial wastes. Biometals 5:179–185

    CAS  Article  Google Scholar 

  67. Pérez-Miranda S, Cabirol N, George-Téllez R et al (2007) O-CAS, a fast and universal method for siderophore detection. J Microbiol Methods 70:127–131

    Article  Google Scholar 

  68. Pishchik VN, Vorob’ev NI, Provorov NA, Khomyakov YV (2016) Mechanisms of plant and microbial adaptation to heavy metals in plant–microbial systems. Microbiol 85:257–271

    CAS  Article  Google Scholar 

  69. Pümpel T, Pernfuß B, Pigher B et al (1995a) A rapid screening method for the isolation of metal-accumulating microorganisms. J Ind Microbiol 14:213–217

    Article  Google Scholar 

  70. Qamar N, Rehman Y, Hasnain S (2017) Arsenic-resistant and plant growth-promoting firmicutes and γ-Proteobacteria species from industrially polluted irrigation water and corresponding cropland. J Appl Microbiol 123:748–758

    CAS  Article  Google Scholar 

  71. Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149

    CAS  Article  Google Scholar 

  72. Ramírez-Díaz MI, Díaz-Pérez C, Vargas E et al (2008) Mechanisms of bacterial resistance to chromium compounds. Biometals 21:321–332

    Article  Google Scholar 

  73. Rathnayake IVN, Megharaj M, Krishnamurti GSR et al (2013) Heavy metal toxicity to bacteria–are the existing growth media accurate enough to determine heavy metal toxicity? Chemosphere 90:1195–1200

    CAS  Article  Google Scholar 

  74. Retamal-Morales G, Mehnert M, Schwabe R et al (2018) Detection of arsenic-binding siderophores in arsenic-tolerating Actinobacteria by a modified CAS assay. Ecotoxicol Environ Saf 157:176–181. https://doi.org/10.1016/j.ecoenv.2018.03.087

    CAS  Article  PubMed  Google Scholar 

  75. Rodriguez E, Santos C, Azevedo R et al (2012) Chromium (VI) induces toxicity at different photosynthetic levels in pea. Plant Physiol Biochem 53:94–100

    CAS  Article  Google Scholar 

  76. Román-Ponce B, Ramos-Garza J, Arroyo-Herrera I et al (2018a) Mechanism of arsenic resistance in endophytic bacteria isolated from endemic plant of mine tailings and their arsenophore production. Arch Microbiol 200:883–895. https://doi.org/10.1007/s00203-018-1495-1

    CAS  Article  PubMed  Google Scholar 

  77. Román-Ponce B, Ramos-Garza J, Vásquez-Murrieta MS et al (2016) Cultivable endophytic bacteria from heavy metal (loid)-tolerant plants. Arch Microbiol 198:941–956

    Article  Google Scholar 

  78. Saito MA, Chisholm SW, Moffett JW, Waterbury J (2002) Cobalt limitation and uptake in the marine cyanobacterium Prochlorococcus. Limnol Oceanogr 47:1629–1636

    CAS  Article  Google Scholar 

  79. Saravanan VS, Kumar MR, Sa TM (2011) Microbial zinc solubilization and their role on plants. In: Bacteria in agrobiology: plant nutrient management. Springer, pp 47–63

  80. Schalk IJ, Hannauer M, Braud A (2011) New roles for bacterial siderophores in metal transport and tolerance. Environ Microbiol 13:2844–2854. https://doi.org/10.1111/j.1462-2920.2011.02556.x

    CAS  Article  PubMed  Google Scholar 

  81. Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    CAS  Article  Google Scholar 

  82. Sharma SK, Sharma MP, Ramesh A, Joshi OP (2011) Characterization of zinc-solubilizing Bacillus isolates and their potential to influence zinc assimilation in soybean seeds. J Microbiol Biotechnol 22:352–359. https://doi.org/10.4014/jmb.1106.05063

    CAS  Article  Google Scholar 

  83. Silva Filho GN, Vidor C (2000) Solubilização de fostatos por microrganismos na presença de fontes de carbono. Rev Bras Ciência do Solo 24:311–319

    CAS  Article  Google Scholar 

  84. Simeonova DD, Lièvremont D, Lagarde F et al (2004) Microplate screening assay for the detection of arsenite-oxidizing and arsenate-reducing bacteria. FEMS Microbiol Lett 237:249–253

    CAS  Article  Google Scholar 

  85. Soufiane B, Baizet M, Côté J-C (2013) Multilocus sequence analysis of Bacillus thuringiensis serovars navarrensis, bolivia and vazensis and Bacillus weihenstephanensis reveals a common phylogeny. Antonie Van Leeuwenhoek 103:195–205

    CAS  Article  Google Scholar 

  86. Stackebrandt E (2006) Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33:152–155

    Google Scholar 

  87. Stong T, Osuna CA, Shear H et al (2013) Mercury concentrations in common carp (Cyprinus carpio) in Lake Chapala, Mexico: a lakewide survey. J Environ Sci Heal-Part A Toxic/Hazardous Subst Environ Eng 48:1835–1841. https://doi.org/10.1080/10934529.2013.823340

    CAS  Article  Google Scholar 

  88. Tamura K, Peterson D, Peterson N et al (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. https://doi.org/10.1093/molbev/msr121

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  89. Thatoi H, Das S, Mishra J et al (2014) Bacterial chromate reductase, a potential enzyme for bioremediation of hexavalent chromium: a review. J Environ Manag 146:383–399. https://doi.org/10.1016/j.jenvman.2014.07.014

    CAS  Article  Google Scholar 

  90. Torres Z, Mora MA, Taylor RJ et al (2014) Accumulation and hazard assessment of mercury to waterbirds at Lake Chapala, Mexico. Environ Sci Technol 48:6359–6365. https://doi.org/10.1021/es4048076

    CAS  Article  PubMed  Google Scholar 

  91. Torres Z, Mora MA, Taylor RJ, Alvarez-Bernal D (2016) Tracking metal pollution in Lake Chapala: concentrations in water, sediments, and fish. Bull Environ Contam Toxicol 97:418–424. https://doi.org/10.1007/s00128-016-1892-6

    CAS  Article  PubMed  Google Scholar 

  92. Trasande L, Cortes JE, Landrigan PJ et al (2010) Methylmercury exposure in a subsistence fishing community in Lake Chapala, Mexico: an ecological approach. Environ Heal A Glob Access Sci Source 9:1–10. https://doi.org/10.1186/1476-069X-9-1

    CAS  Article  Google Scholar 

  93. Vallee BL, Falchuk KH (1993) The biochemical basis of zinc physiology. Physiol Rev 73:79–118

    CAS  Article  Google Scholar 

  94. Veglió F, Beolchini F, Gasbarro A (1997) Biosorption of toxic metals: an equilibrium study using free cells of Arthrobacter sp. Process Biochem 32:99–105. https://doi.org/10.1016/S0032-9592(96)00047-7

    Article  Google Scholar 

  95. Verma P, Yadav AN, Khannam KS et al (2016) Appraisal of diversity and functional attributes of thermotolerant wheat associated bacteria from the peninsular zone of India. Saudi J Biol Sci. https://doi.org/10.1016/j.sjbs.2016.01.042

    Article  PubMed  PubMed Central  Google Scholar 

  96. Vinuesa P, Silva C, Lorite MJ et al (2005) Molecular systematics of rhizobia based on maximum likelihood and Bayesian phylogenies inferred from rrs, atpD, recA and nifH sequences, and their use in the classification of Sesbania microsymbionts from Venezuelan wetlands. Syst Appl Microbiol 28:702–716. https://doi.org/10.1016/j.syapm.2005.05.007

    CAS  Article  PubMed  Google Scholar 

  97. Wani PA, Khan MS, Zaidi A (2007) Effect of metal tolerant plant growth promoting Bradyrhizobium sp. (vigna) on growth, symbiosis, seed yield and metal uptake by greengram plants. Chemosphere 70:36–45. https://doi.org/10.1016/j.chemosphere.2007.07.028

    CAS  Article  PubMed  Google Scholar 

  98. Weeger W, Lièvremont D, Perret M et al (1999) Oxidation of arsenite to arsenate by a bacterium isolated from an aquatic environment. Biometals 12:141–149. https://doi.org/10.1023/A:1009255012328

    CAS  Article  PubMed  Google Scholar 

  99. Wu C, Cui MQ, Xue SG et al (2018) Remediation of arsenic-contaminated paddy soil by iron-modified biochar. Environ Sci Pollut Res 25:20792–20801. https://doi.org/10.1007/s11356-018-2268-8

    CAS  Article  Google Scholar 

  100. Wu Q, Du J, Zhuang G, Jing C (2013) Bacillus sp. SXB and Pantoea sp. IMH, aerobic As(V)-reducing bacteria isolated from arsenic-contaminated soil. J Appl Microbiol 114:713–721. https://doi.org/10.1111/jam.12093

    CAS  Article  PubMed  Google Scholar 

  101. Wuana RA, Okieimen FE (2014) Heavy metals in contaminated soils: a review of sources, chemistry, risks, and best available strategies for remediation. Heavy Met Contam Water Soil Anal Assess Remediat Strateg 2011:1–50. https://doi.org/10.1201/b16566

    Article  Google Scholar 

  102. Yan G, Chen X, Du S et al (2019) Genetic mechanisms of arsenic detoxification and metabolism in bacteria. Curr Genet 65:329–338. https://doi.org/10.1007/s00294-018-0894-9

    CAS  Article  PubMed  Google Scholar 

  103. Yu X, Li Y, Zhang C et al (2014) Culturable heavy metal-resistant and plant growth promoting bacteria in V-Ti magnetite mine tailing soil from Panzhihua China. PLoS ONE. https://doi.org/10.1371/journal.pone.0106618

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the projects SIP20140353, SIP20140354, SIP20150311 and SIP20150358. I. Arroyo-Herrera received scholarships from the Consejo Nacional de Ciencia y Tecnología (CONACyT) and BEIFI-IPN. B. Román-Ponce received postdoctoral scholarships from the CONACyT-323687. P. Estrada-de los Santos, E. T. Wang and M. S. Vásquez-Murrieta appreciate the scholarships of Comisión de Operación y Fomento de Actividades Académicas-IPN and Estímulos al Desempeño de los Investigadores-IPN and Sistema Nacional de Investigadores-CONACyT.

Author information

Affiliations

Authors

Contributions

IAH, BRP, PES, EW and MSVM were involved in the design of the project. IAH and BRP standardized the methodology. IAH, ALRM and BRP evaluated resistance mechanism. BRP, PES, EW and MSVM wrote the manuscript. All the authors read and approved the final manuscript. MSVM supervised each stage of the experiment.

Corresponding author

Correspondence to María Soledad Vásquez-Murrieta.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Erko Stackebrandt.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 4641 KB)

Supplementary file2 (DOCX 66 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arroyo-Herrera, I., Román-Ponce, B., Reséndiz-Martínez, A.L. et al. Heavy-metal resistance mechanisms developed by bacteria from Lerma–Chapala basin. Arch Microbiol (2021). https://doi.org/10.1007/s00203-020-02140-2

Download citation

Keywords

  • Heavy metals
  • Resistance mechanism
  • Plant growth-promoting traits
  • Novel species