Skip to main content
Log in

Biosynthesis and industrial applications of α-amylase: a review

  • Mini-Review
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Amylase is amongst the most indispensable enzymes that have a large number of applications in laboratories and industries. Mostly, α-amylase is synthesized from microbes such as bacteria, fungi and yeast. Due to the high demand for α-amylase, its synthesis can be enhanced using recombinant DNA technology, different fermentation methods, less expensive and good carbon and nitrogen sources, and optimizing the various parameters during fermentation, e.g., temperature, pH and fermentation duration. Various methods are used to measure the production and activity of synthesized α-amylase like iodine, DNS, NS and dextrinizing methods. The activity of crude α-amylase can be elevated to the maximum level by optimizing the temperature and pH. Some metals also interact with α-amylase and increase its activity like K+, Na+, Mg2+ and Ca2+. Some industries such as starch conversion, food, detergent, paper, textile industries and fuel alcohol production extensively utilize α-amylase for their various purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abd-Elhalem BT, El-Sawy M, Gamal RF, Abou-Taleb KA (2015) Production of amylases from Bacillus amyloliquefaciens under submerged fermentation using some agro-industrial by-products. Ann Agri Sci 60(2):193–202

    Article  Google Scholar 

  • Al-Johani NB, Al-seeni MN, Ahmed YM (2017) Optimization of alkaline α-amylase production by thermophilic Bacillus subtilis. Afr J Tradit Complement Alt Med 14:288–330

    Article  CAS  Google Scholar 

  • Anbu P, Hur BK (2014) Isolation of an organic solvent-tolerant bacterium Bacillus licheniformis pal05 that is able to secrete solvent-stable lipase. Biotechnol Appl Biochem 61:28–34

    Article  Google Scholar 

  • Argyros A, Barrett T, Caiazza N, Hogsett D (2017) Genetically modified Clostridium thermocellum engineered to ferment xylose. US Patent ENCHI Corp 9:546.

  • Babu KR, Satyanarayana T (1995) α-Amylase production by thermophilic Bacillus coagulans in solid state fermentation. Process Biochem 30:305–309

    Article  CAS  Google Scholar 

  • Baeyens J, Kang Q, Appels L, Dewil R, Lv Y, Tan T (2015) Challenges and opportunities in improving the production of bio-ethanol. Prog Energy Combust Sci 47:60–88

    Article  Google Scholar 

  • Barragán LP, Figueroa JJB, Durán LR, González CA, Hennigs C (2016) Fermentative production methods. Biotransformation of agricultural waste by-product . Elsevier, London, pp 189–217

    Book  Google Scholar 

  • Belmessikh A, Boukhalfa H, Mechakra-Maza A, Gheribi-Aoulmi Z, Amrane A (2013) Statistical optimization of culture medium for neutral protease production by Aspergillus oryzae. Comparative study between solid and submerged fermentations on tomato pomace. J Taiwan Inst Chem Eng 44:377–385

    Article  CAS  Google Scholar 

  • Bernfeld P (1951) Enzymes of starch degradation and synthesis. Adv Enzymol Relat Subj Biochem 12:379–428

    CAS  PubMed  Google Scholar 

  • Bhargav S, Panda BP, Ali M, Javed S (2008) Solid-state fermentation: an overview. Chem Biochem Eng Q 22:49–70

    CAS  Google Scholar 

  • Chandrasekaran M, Basheer SM, Chellappan S, Krishna JG, Beena PS (2015) Enzymes in food and beverage production: an overview. Enzym Food Beverage Process CRC Press 25:133–154

    Article  Google Scholar 

  • Chen L, Gu W, Xu HY, Yang GL, Shan XF, Chen G, Wang CF, Qian AD (2018) Complete genome sequence of Bacillus velezensis 157 isolated from Eucommia ulmoides with pathogenic bacteria inhibiting and lignocellulolytic enzymes production by SSF. 3 Biotech 8:114

    Article  PubMed  PubMed Central  Google Scholar 

  • Chi MC, Chen YH, Wu TJ, Lo HF, Lin LL (2010) Engineering of a truncated α-amylase of Bacillus sp. strain TS-23 for the simultaneous improvement of thermal and oxidative stabilities. J Biosci Bioeng 109:531–538

    Article  CAS  PubMed  Google Scholar 

  • Das R, Kayastha AM (2019) β-Amylase: general properties, mechanism and panorama of applications by immobilization on nano-structures. Biocatalysis. . Springer, New York, pp 17–38

    Google Scholar 

  • Dasari PR, Ramteke PW, Kesri S, Kongala PR (2019) Comparative study of cellulase production using submerged and solid-state fermentation. Approaches Enhanc Ind Product Fungal Cell 2019:37–52

    Article  Google Scholar 

  • Dash BK, Rahman MM, Sarker PK (2015) Molecular identification of a newly isolated Bacillus subtilis BI19 and optimization of production conditions for enhanced production of extracellular amylase. BioMed Res Int 2015:1–9

    Article  Google Scholar 

  • de Souza PM (2010) Application of microbial α-amylase in industry—a review. Braz J Microbiol 41:850–861

    Article  PubMed  PubMed Central  Google Scholar 

  • Du R, Song Q, Zhang Q, Zhao F, Kim RC, Zhou Z, Han Y (2018) Purification and characterization of novel thermostable and Ca-independent α-amylase produced by Bacillus amyloliquefaciens BH072. Int J Biol Macromol 115:1151–1156

    Article  CAS  PubMed  Google Scholar 

  • El-Fallal A, Dobara MA, El-Sayed A, Omar N (2012) Starch and microbial α-amylases: from concepts to biotechnological applications. Carbohydr Compr Stud Glycobiol Glycotechnol 21:459–488

    Google Scholar 

  • Erdal SE, Taskin ME (2010) Production of α-amylase by Penicillium expansum MT-1 in solid-state fermentation using waste Loquat (Eriobotrya japonica Lindley) kernels as substrate. Rom Biotech Lett 15:5342–5350

    CAS  Google Scholar 

  • Ghorai S, Banik SP, Verma D, Chowdhury S, Mukherjee S, Khowala S (2009) Fungal biotechnology in food and feed processing. Food Res Int 42:577–587

    Article  CAS  Google Scholar 

  • Goesaert H, Slade L, Levine H, Delcour JA (2009) Amylases and bread firming—an integrated view. J Cereal Sci 50:345–352

    Article  CAS  Google Scholar 

  • Gopinath SC, Anbu P, Arshad MK, Lakshmipriya T, Voon CH, Hashim U, Chinni SV (2017) Biotechnological processes in microbial amylase production. BioMed Res Int 2017:1–9

    Article  Google Scholar 

  • Gupta R, Gigras P, Mohapatra H, Goswami VK, Chauhan B (2003) Microbial α-amylases: a biotechnological perspective. Process Biochem 38:1599–1616

    Article  CAS  Google Scholar 

  • Gusakov AV, Kondratyeva EG, Sinitsyn AP (2011) Comparison of two methods for assaying reducing sugars in the determination of carbohydrase activities. Int J Anal Chem 2011:1–4

    Article  Google Scholar 

  • Haq I, Ali S, Javed MM, Hameed U, Saleem A, Adnan F, Qadeer MA (2010) Production of alpha amylase from a randomly induced mutant strain of Bacillus amyloliquefaciens and its application as a desizer in textile industry. Pak J Bot 42:473–484

    CAS  Google Scholar 

  • Hiteshi K (2016) Production optimization of α-amylase from Bacillus licheniformis. J Adv Res Pharm Biol Sci 2(5):01–14

    Google Scholar 

  • Jujjavarapu SE, Dhagat S (2019) Evolutionary trends in industrial production of α-amylase. Recent Pat Biotechnol 13:4–18

    Article  CAS  PubMed  Google Scholar 

  • Kamon M, Sumitani JI, Tani S, Kawaguchi T, Kamon M, Sumitani J, Kawaguchi T (2015) Characterization and gene cloning of a maltotriose-forming exo-amylase from Kitasatospora sp. MK-1785. Appl Microbiol Biotechnol 99:4743–4753

    Article  CAS  PubMed  Google Scholar 

  • Kumar V (2011) Identification of the sequence motif of glycoside hydrolase 13 family members. Bioinformation 6:61–63

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee CY, deMan JM (2018) Enzymes Principles of food chemistry . Springer, New york, pp 397–433

    Book  Google Scholar 

  • Li D, Zhao Y, Fei T, Wang Y, Lee BH, Shim JH, Xu B, Li Z, Li X (2019) Effects of Streptococcus thermophilus GtfB enzyme on dough rheology, bread quality and starch digestibility. Food Hydrocoll 96:134–139

    Article  CAS  Google Scholar 

  • McCleary BV, McGeough P (2015) A comparison of polysaccharide substrates and reducing sugar methods for the measurement of endo-1, 4-β-xylanase. Appl biochem biotechnol 177:1152–1163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mobini-Dehkordi M, Javan FA (2012) Application of alpha-amylase in biotechnology. J Biol Today’s World 1:39–50

    Google Scholar 

  • Mojsov K, Andronikov D, Janevski A, Jordeva S, Kertakova M, Golomeova S, Gaber S, Ignjatov I (2018) Production and application of α-amylase enzyme in textile industry. Tekst Ind 66:23–28

    Google Scholar 

  • Offen WA, Viksoe-Nielsen A, Borchert TV, Wilson KS, Davies GJ (2015) Three-dimensional structure of a variant termamyl-like Geobacillus stearothermophilus α-amylase at 1.9 Å resolution. Acta Crystallogr Sect F Struct Biol Comm 71:66–70

    Article  CAS  Google Scholar 

  • Ojewumi ME, Akwayo IJ, Taiwo OS, Obanla OM, Ayoola AA, Ojewumi EO, Oyeniyi EA (2018) Bio-conversion of sweet potato peel waste to bioethanol using Saccharomyces cerevisiae. Int J Pharm Phytopharmacol Res 8:46–54

    CAS  Google Scholar 

  • Pal A, Khanum F (2010) Production and extraction optimization of xylanase from Aspergillus niger DFR-5 through solid-state-fermentation. Bioresour Technol 101:7563–7569

    Article  CAS  PubMed  Google Scholar 

  • Pan S, Ding N, Ren J, Gu Z, Li C, Hong Y, Li Z (2017) Malto-oligosaccharide-forming amylase: characteristics, preparation, and application. Biotechnol Adv 35:619–632

    Article  CAS  PubMed  Google Scholar 

  • Paulová L, Patáková P, Brányik T (2013) Advanced fermentation processes. engineering aspects of food biotechnol, vol 29. CRC Press, Boca raton, pp 89–110

    Chapter  Google Scholar 

  • Pfueller SL, Elliott WH (1969) The extracellular α-amylase of Bacillus stearothermophilus. J Biol Chem 244:48–54

    Article  CAS  PubMed  Google Scholar 

  • Pinotti LM, Lacerda JX, Oliveira MM, Teixeira RD, Rodrigues C, Cassini ST (2017) Production of lipolytic enzymes using agro-industrial residues. Chem Eng Trans 56:1897–1902

    Google Scholar 

  • Priyadarshini S, Ray P (2016) Alkaline amylase production by submerged fermentation by Bacillus Sp. Asian J Microbiol Biotech Environ Sci 18:745–748

    Google Scholar 

  • Radeloff MA, Beck RH (2014) Starch hydrolysis—nutritive syrups and powders. Sugar Ind 139:222–227

    Article  CAS  Google Scholar 

  • Rana N, Walia A, Gaur A (2013) α-Amylases from microbial sources and its potential applications in various industries. Nat Acad Sci Lett 36:9–17

    Article  CAS  Google Scholar 

  • Raul D, Biswas T, Mukhopadhyay S, Kumar Das S, Gupta S (2014) Production and partial purification of alpha amylase from Bacillus subtilis (MTCC 121) using solid state fermentation. Biochem Res Int 2014:1–5

    Article  Google Scholar 

  • Razdan N, Kocher GS (2018) Utilization of damaged and spoiled wheat grains for bioethanol production. Biosci Biotech Res Commun 11:658–673

    Article  Google Scholar 

  • Sahni TK, Goel A (2015) Microbial enzymes with special reference to α-amylase. Bio Evol 2:19–25

    Google Scholar 

  • Sakthi SS, Kanchana D, Saranraj P, Usharani G (2012) Evaluation of amylase activity of the amylolytic fungi Aspergillus niger using cassava as substrate. Int J Appl Microbiol Sci 1:24–34

    Google Scholar 

  • Salman T, Kamal M, Ahmed M, Siddiqa SM, Khan RA, Hassan A (2016) Medium optimization for the production of amylase by Bacillus Subtilis RM16 in shake-flask fermentation. Pak J Pharm Sci 29:439–444

    CAS  PubMed  Google Scholar 

  • Seddigh S, Darabi M (2015) Structural and phylogenetic analysis of α-glucosidase protein in insects. Biologia 70:812–825

    Article  CAS  Google Scholar 

  • Sethi BK, Jana A, Nanda PK, DasMohapatra PK, Sahoo SL, Patra JK (2016) Production of α-amylase by Aspergillus terreus NCFT 4269.10 using pearl millet and its structural characterization. Front Plant Sci 7:639

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma AK, Sharma V, Saxena J, Chandra R, Alam A, Prakash A (2015) Isolation and screening of amylolytic bacteria from soil. Int J Sci Res Agric Sci 2:159–165

    CAS  Google Scholar 

  • Shevkani K, Singh N, Bajaj R, Kaur A (2017) Wheat starch production, structure, functionality and applications—a review. Int J Food Sci Technol 52:38–58

    Article  CAS  Google Scholar 

  • Simair AA, Qureshi AS, Khushk I, Ali CH, Lashari S, Bhutto MA, Mangrio GS, Lu C (2017) Production and partial characterization of α-amylase enzyme from Bacillus sp. BCC 01–50 and potential applications. BioMed Res Int 2017:1–9

    Article  Google Scholar 

  • Singh R, Kumar M, Mittal A, Mehta PK (2016) Microbial enzymes: industrial progress in 21st century. 3 Biotech 6:1–15

    Article  PubMed  Google Scholar 

  • Singh S, Singh S, Bali V, Sharma L, Mangla J (2014) Production of fungal amylases using cheap, readily available agri-residues, for potential application in textile industry. BioMed Res Int 2014:1–9

    Google Scholar 

  • Son YJ, Ryu AJ, Li L, Han NS, Jeong KJ (2016) Development of a high-copy plasmid for enhanced production of recombinant proteins in Leuconostoc citreum. Microb Cell Fact 15:12

    Article  PubMed  PubMed Central  Google Scholar 

  • Sundarram A, Pandurangappa T, Murthy K (2014) α-Amylase production and applications: a review. J Appl Environ Microbiol 2:166–175

    Google Scholar 

  • Suriya J, Bharathiraja S, Krishnan M, Manivasagan P, Kim SK (2016) Marine microbial amylases: properties and applications. Adv Food Nutr Res 79:161–177 (Academic Press)

    Article  CAS  PubMed  Google Scholar 

  • Unakal C, Kallur RI, Kaliwal BB (2012) Production of α-amylase using banana waste by Bacillus subtilis under solid state fermentation. Eur J Exp Biol 2:1044–1052

    CAS  Google Scholar 

  • Upgade A, Nandeshwar A, Samant L (2011) Assessment of fungal protease enzyme from French bean using A. niger by solid state fermentation. J Microbiol Biotech Res 1:45–51

    CAS  Google Scholar 

  • Uthumporn U, Zaidul IS, Karim AA (2010) Hydrolysis of granular starch at sub-gelatinization temperature using a mixture of amylolytic enzymes. Food Bioprod Process 88:47–54

    Article  CAS  Google Scholar 

  • Viswanathan S, Rohini S, Rajesh R, Poomari K (2014) Production and medium optimization of amylase by Bacillus sp. using submerged fermentation method. World J Chem 9:01–06

    Google Scholar 

  • Wu X, Wang Y, Tong B, Chen X, Chen J (2018) Purification and biochemical characterization of a thermostable and acid-stable alpha-amylase from Bacillus licheniformis B4–423. Int J Biol Macromol 109:329–337

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Wang S, Zhang X, Ji W, Song F, Zhao Y, Li J (2016) The amyR-deletion strain of Aspergillus niger CICC2462 is a suitable host strain to express secreted protein with a low background. Microb Cell Fact 15:68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaukat Ali.

Ethics declarations

Conflict of interest

All authors declare there are no conflicts of interest.

Additional information

Communicated by Erko Stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farooq, M.A., Ali, S., Hassan, A. et al. Biosynthesis and industrial applications of α-amylase: a review. Arch Microbiol 203, 1281–1292 (2021). https://doi.org/10.1007/s00203-020-02128-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-020-02128-y

Keywords

Navigation