Skip to main content
Log in

5-Hydroxymethylfurfural inhibits Acinetobacter baumannii biofilms: an in vitro study

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The present study was aimed to investigate the antibiofilm activity of 5-hydroxymethylfurfural against Acinetobacter baumanni and Vellar estuary isolates v3 (Acinetobacter nosocomialis). The biofilm inhibitory concentration (BIC) of 5HMF against A. baumannii and v3 (A. nosocomialis) was found to be 100 µg/ml) exhibited non-bactericidal concentration-dependent antibiofilm activities against Acinetobacter species. The present study found that 5HMF treatment is very effective in the initial stage of A. baumannii biofilms and it significantly disrupted the mature biofilms. Moreover, 5HMF treatment inhibited the extracellular polymeric substances (EPS), including polysaccharides and proteins production. Results from gene expression and in vitro assays further demonstrated the 5HMF treatment downregulated the expression of bfmR, bap, csuA/B, ompA and katE virulence genes, which consistently affects biofilm formation and its mediated virulence property. The present study suggests that 5HMF unveil its antibiofilm activity by interfering initial biofilm formation and suppressing the virulence regulator genes in A. baumannii. Further studies are required to explore the 5HMF mode of action responsible for the antibiofilm activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bhargava N, Sharma P, Capalash N (2014) Pyocyanin stimulates quorum sensing-mediated tolerance to oxidative stress and increases persister cell populations in Acinetobacter baumannii. Infect Immun 82:3417–3425

    PubMed  PubMed Central  Google Scholar 

  • Brossard KA, Campagnari AA (2012) The Acinetobacter baumannii biofilm-associated protein plays a role in adherence to human epithelial cells. Infect Immun 80:228–233

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang Y, Gu W, McLandsborough L (2012) Low concentration of ethylenediaminetetraacetic acid (EDTA) affects biofilm formation of Listeria monocytogenes by inhibiting its initial adherence. Food Microbiol 29:10–17

    CAS  PubMed  Google Scholar 

  • Choi CH, Lee EY, Lee YC, Park TI, Kim HJ, Hyun SH, Kim SA, Lee SK, Lee JC (2005) Outer membrane protein 38 of Acinetobacter baumannii localizes to the mitochondria and induces apoptosis of epithelial cells. Cell Microbiol 7:1127–1138

    CAS  PubMed  Google Scholar 

  • Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12:564–582

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doyle RJ (2000) Contribution of the hydrophobic effect to microbial infection. Microb Infect 2(4):391–400

    CAS  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1951) A colorimetric method for the determination of sugars. Nature 168:167

    CAS  PubMed  Google Scholar 

  • Gaddy JA, Actis LA (2009) Regulation of Acinetobacter baumannii biofilm formation. Future Microbiol 4:273–278

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garnacho J, Sole-Violan J, Sa-Borges M, Diaz E, Rello J (2003) Clinical impact of pneumonia caused by Acinetobacter baumannii in intubated patients: a matched cohort study. Crit Care Med 31:2478–2482

    PubMed  Google Scholar 

  • Jiao Y, Cody GD, Harding AK, Wilmes P, Schrenk M, Wheeler KE, Banfield JF, Thelen MP (2010) Characterization of extracellular polymeric substances from acidophilic microbial biofilms. Appl Environ Microbiol 76:2916–2922

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kannappan A, Sivaranjani M, Srinivasan R, Rathna J, Pandian SK, Ravi AV (2017) Inhibitory efficacy of geraniol on biofilm formation and development of adaptive resistance in Staphylococcus epidermidis RP62A. J Med Microbiol 66:1506–1515

    CAS  PubMed  Google Scholar 

  • Karuppiah V, Thiruganasambandam R (2017) Antibiofilm and quorum sensing inhibitory potential of Excoecaria agallocha against Pseudomonas aeruginosa. Int J Sci Invent Today 6:758–771

    Google Scholar 

  • Karuppiah V, Thiruganasambandam R (2018) Anti-biofilm and quorum sensing inhibitory potential of Acanthus ilicifolius against uropathogens. LS Int J Life Sci 7:65–74

    Google Scholar 

  • Karuppiah V, Thirunanasambandham R (2020) Quebrachitol from Rhizophora mucronata inhibits biofilm formation and virulence production in Staphylococcus epidermidis by impairment of initial attachment and intercellular adhesion. Arch Microbiol 7:1–4

    Google Scholar 

  • Kim SW, Choi CH, Moon DC, Jin JS, Lee JH, Shin JH, Kim JM, Lee YC, Seol SY, Cho DT, Lee JC (2009) Serum resistance of Acinetobacter baumannii through the binding of factor H to outer membrane proteins. FEMS Microbiol Lett 301:224–231

    CAS  PubMed  Google Scholar 

  • Kwon HI, Kim S, Oh MH, Na SH, Kim YJ, Jeon YH, Lee J (2017) Outer membrane protein A contributes to antimicrobial resistance of Acinetobacter baumannii through the OmpA-like domain. J Antimicrob Chemother 72:3012–3015

    CAS  PubMed  Google Scholar 

  • Limoli DH, Jones CJ, Wozniak DJ (2015) Bacterial extracellular polysaccharides in biofilm formation and function. Microbiol Spectr 7:223–247

    Google Scholar 

  • Loehfelm TW, Luke NR, Campagnari AA (2008) Identification and characterization of an Acinetobacter baumannii biofilm-associated protein. J Bacteriol 190:1036–1044

    CAS  PubMed  Google Scholar 

  • Mah TF, O'Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39

    CAS  PubMed  Google Scholar 

  • Nemec A, Krizova L, Maixnerova M, van der Reijden TJ, Deschaght P, Passet V, Vaneechoutte M, Brisse S, Dijkshoorn L (2011) Genotypic and phenotypic characterization of the Acinetobacter calcoaceticusAcinetobacter baumannii complex with the proposal of Acinetobacter pittii sp. nov. (formerly Acinetobacter genomic species 3) and Acinetobacter nosocomialis sp. nov. (formerly Acinetobacter genomic species 13TU). Res Microbiol 162:393–404

    CAS  PubMed  Google Scholar 

  • Oh ET, So JS (2003) A rapid method for RNA preparation from Gram-positive bacteria. J Microbiol Methods 52:395–398

    CAS  PubMed  Google Scholar 

  • Peleg AY, Seifert H, Paterson DL (2008) Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev 21:538–582

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez-Baño J, Marti S, Soto S, Fernández-Cuenca F, Cisneros JM, Pachón J, Pascual A, Martínez-Martínez L, McQueary C, Actis LA, Vila J (2008) Biofilm formation in Acinetobacter baumannii: associated features and clinical implications. Clin Microbiol Infect 14:276–278

    PubMed  Google Scholar 

  • Romero D, Aguilar C, Losick R, Kolter R (2010) Amyloid fibers provide structural integrity to Bacillus subtilis biofilms. Proc Nat Acad Sci 107:2230–2234

    CAS  PubMed  Google Scholar 

  • Rubin H, Selwood T, Yano T, Weaver DG, Loughran HM, Costanzo MJ, Scott RW, Wrobel JE, Freeman KB, Reitz AB (2015) Acinetobacter baumannii OxPhos inhibitors as selective anti-infective agents. Bioorg Med Chem Lett 25:378–383

    CAS  PubMed  Google Scholar 

  • Russo TA, Manohar A, Beanan JM, Olson R, MacDonald U, Graham J, Umland TC (2016) The response regulator BfmR is a potential drug target for Acinetobacter baumannii. mSphere 1:e00082–e116

    PubMed  PubMed Central  Google Scholar 

  • Sato Y, Unno Y, Kawakami S, Ubagai T, Ono Y (2017) Virulence characteristics of Acinetobacter baumannii clinical isolates vary with the expression levels of omps. J Med Microbiol 66:203–212

    PubMed  Google Scholar 

  • Sivaranjani M, Srinivasan R, Aravindraja C, Karutha Pandian S, Veera Ravi A (2018) Inhibitory effect of α-mangostin on Acinetobacter baumannii biofilms–an in vitro study. Biofouling 34:579–593

    CAS  PubMed  Google Scholar 

  • Subramenium GA, Vijayakumar K, Pandian SK (2015) Limonene inhibits streptococcal biofilm formation by targeting surface-associated virulence factors. J Med Microbiol 64:879–890

    CAS  PubMed  Google Scholar 

  • Tatsuno I, Isaka M, Okada R, Zhang Y, Hasegawa T (2014) Relevance of the two-component sensor protein CiaH to acid and oxidative stress responses in Streptococcus pyogenes. BMC Res Notes 7:189

    PubMed  PubMed Central  Google Scholar 

  • Thompson RJ, Bobay BG, Stowe SD, Olson AL, Peng L, Su Z, Actis LA, Melander C, Cavanagh J (2012) Identification of BfmR, a response regulator involved in biofilm development, as a target for a 2-aminoimidazole-based antibiofilm agent. Biochemistry 51:9776–9778

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tomaras AP, Dorsey CW, Edelmann RE, Actis LA (2003) Attachment to and biofilm formation on abiotic surfaces by Acinetobacter baumannii: involvement of a novel chaperone-usher pili assembly system. Microbiology 149:3473–3484

    CAS  PubMed  Google Scholar 

  • Tseng SP, Hung WC, Huang CY, Lin YS, Chan MY, Lu PL, Lin L, Sheu JH (2016) 5-Episinuleptolide decreases the expression of the extracellular matrix in early biofilm formation of multi-drug resistant Acinetobacter baumannii. Mar Drugs 14:143

    PubMed Central  Google Scholar 

  • Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3- new capabilities and interfaces. Nucleic Acids Res 40:e115

    CAS  PubMed  PubMed Central  Google Scholar 

  • van Loosdrecht MC, Norde W, Lyklema J, Zehnder AJ (1990) Hydrophobic and electrostatic parameters in bacterial adhesion. Aquat Sci 52:103–114

    Google Scholar 

  • Vatansever F, de Melo WC, Avci P, Vecchio D, Sadasivam M, Gupta A, Chandran R, Karimi M, Parizotto NA, Yin R, Tegos GP (2013) Antimicrobial strategies centered around reactive oxygen species–bactericidal antibiotics, photodynamic therapy, and beyond. FEMS Microbiol Rev 37:955–989

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vijayakumar K, Ramanathan T (2018) Antiquorum sensing and biofilm potential of 5-Hydroxymethylfurfural against Gram positive pathogens. Microb Pathog 125:48–50

    CAS  PubMed  Google Scholar 

  • Vijayakumar K, Ramanathan T (2020) Musa acuminata and its bioactive metabolite 5-Hydroxymethylfurfural mitigates quorum sensing (las and rhl) mediated biofilm and virulence production of nosocomial pathogen Pseudomonas aeruginosa in vitro. J Ethnopharmacol 246:112242

    CAS  PubMed  Google Scholar 

  • Viszwapriya D, Subramenium GA, Prithika U, Balamurugan K, Pandian SK (2016) Betulin inhibits virulence and biofilm of Streptococcus pyogenes by suppressing ropB core regulon, sagA and dltA. FEMS Pathog Dis 74:ftw088

    Google Scholar 

  • Wang X, Zhang L, Sun A, Yang X, Sang W, Jiang Y, Cheng J, Wang J, Zhou M, Chen B, Ouyang J (2017) Acinetobacter baumannii bacteraemia in patients with haematological malignancy: a multicentre retrospective study from the Infection Working Party of Jiangsu Society of Hematology. Eur J Clin Microbiol Infect Dis 36:1073–1081

    CAS  PubMed  Google Scholar 

  • Wareham DW, Bean DC, Khanna P, Hennessy EM, Krahe D, Ely A, Millar M (2008) Bloodstream infection due to Acinetobacter spp: epidemiology, risk factors and impact of multi-drug resistance. Eur J Clin Microbiol Infect Dis 27:607

    CAS  PubMed  Google Scholar 

  • Zarrilli R, Giannouli M, Tomasone F, Triassi M, Tsakris A (2009) Carbapenem resistance in Acinetobacter baumannii: the molecular epidemic features of an emerging problem in health care facilities. J Infect Dev Ctries 3:335–341

    CAS  PubMed  Google Scholar 

  • Zhao L, Chen J, Su J, Li L, Hu S, Li B, Zhang X, Xu Z, Chen T (2013) In vitro antioxidant and antiproliferative activities of 5-hydroxymethylfurfural. J Agri Food Chem 61:10604–10611

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully thank Dr. G. Ashwinkumar Subramenium and Dr. S. Muhil vannan Seralathan, PAR Life Sciences and Research Pvt Ltd for support in discussing and fulfilling the work. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karuppiah Vijayakumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and animals

This study does not contain any experiments with human participants or animals performed by any of the authors.

Additional information

Communicated by Erko stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijayakumar, K., Thirunanasambandham, R. 5-Hydroxymethylfurfural inhibits Acinetobacter baumannii biofilms: an in vitro study. Arch Microbiol 203, 673–682 (2021). https://doi.org/10.1007/s00203-020-02061-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-020-02061-0

Keywords

Navigation