Skip to main content
Log in

Metatranscriptomic analysis of modified atmosphere packaged poultry meat enables prediction of Brochothrix thermosphacta and Carnobacterium divergens in situ metabolism

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

In this study, in situ-expressed metabolic routes of Brochothrix (B.) thermosphacta and Carnobacterium (C.) divergens were evaluated based on a metatranscriptomic dataset from bacteria growing on MAP chicken meat (O2/CO2; N2/CO2). Both species exhibited no (C. divergens) or minor transcription regulation (B. thermosphacta) within their main metabolic routes in response to different atmospheres. Both employ pathways related to glucose and ribose. Gluconeogenesis from lipid-borne glycerol is active in the progressing lack of carbohydrates. Pyruvate fates in both species comprise lactate, ethanol, acetate, CO2, formate, C4-compounds and H2O2 (only B. thermosphacta). Both species express genes for a minimal aerobic respiratory chain, but do not possess the genetic setting for a functional citric acid cycle. While products of carbohydrate and glycerol metabolism display mild to medium sensorial off-characteristics, predicted end products of their amino acid metabolism comprise, e.g., isobutyrate and isovalerate (B. thermosphacta) or cadaverine and tyramine (C. divergens) as potent spoilage compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Al-Haideri H, White MA, Kelly DJ (2016) Major contribution of the type II beta carbonic anhydrase CanB (Cj0237) to the capnophilic growth phenotype of Campylobacter jejuni. Environ Microbiol 18:721–735. https://doi.org/10.1111/1462-2920.13092

    Article  CAS  PubMed  Google Scholar 

  • Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106. https://doi.org/10.1186/gb-2010-11-10-r106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balamatsia CC, Paleologos EK, Kontominas MG, Savvaidis IN (2006) Correlation between microbial flora, sensory changes and biogenic amines formation in fresh chicken meat stored aerobically or under modified atmosphere packaging at 4 & #xB0;C: possible role of biogenic amines as spoilage indicators. Antonie Van Leeuwenhoek 89:9–17. https://doi.org/10.1007/s10482-005-9003-4

    Article  CAS  PubMed  Google Scholar 

  • Barakat RK, Griffiths MW, Harris LJ (2000) Isolation and characterization of Carnobacterium, Lactococcus, and Enterococcus spp. from cooked, modified atmosphere packaged, refrigerated, poultry meat. Int J Food Microbiol 62:83–94

    CAS  PubMed  Google Scholar 

  • Bartowsky EJ, Henschke PA (2004) The ‘buttery’attribute of wine—diacetyl—desirability, spoilage and beyond. Int J Food Microbiol 96:235–252

    CAS  PubMed  Google Scholar 

  • Blickstad E, Molin G (1984) Growth and end-product formation in fermenter cultures of Brochothrix thermosphacta ATCC 11509T and two psychrotrophic Lactobacillus spp. in different gaseous atmospheres. J Appl Microbiol 57:213–220

    CAS  Google Scholar 

  • Borch E, Molin G (1989) The aerobic growth and product formation of Lactobacillus, Leuconostoc, Brochothrix, and Carnobacterium in batch cultures. Appl Microbiol Biotechnol 30:81–88

    CAS  Google Scholar 

  • Borch E, Kant-Muermans M-L, Blixt Y (1996) Bacterial spoilage of meat and cured meat products. Int J Food Microbiol 33:103–120

    CAS  PubMed  Google Scholar 

  • Braun P, Sutherland J (2004) Predictive modelling of growth and measurement of enzymatic synthesis and activity by a cocktail of Brochothrix thermosphacta. Int J Food Microbiol 95:169–175

    CAS  PubMed  Google Scholar 

  • Cantoni C, Bersani C, Bregoli M, Bernardini M (2000) Brochothrix thermosphacta in meat and some meat products. Industrie Alimentari (Italy)

  • Casaburi A et al (2011) Spoilage-related activity of Carnobacterium maltaromaticum strains in air-stored and vacuum-packed meat. Appl Environ Microbiol 77:7382–7393. https://doi.org/10.1128/AEM.05304-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casaburi A, De Filippis F, Villani F, Ercolini D (2014) Activities of strains of Brochothrix thermosphacta in vitro and in meat. Food Res Int 62:366–374

    CAS  Google Scholar 

  • Casaburi A, Piombino P, Nychas G-J, Villani F, Ercolini D (2015) Bacterial populations and the volatilome associated to meat spoilage. Food Microbiol 45:83–102

    CAS  PubMed  Google Scholar 

  • Church N (1994) Developments in modified-atmosphere packaging and related technologies. Trends Food Sci Technol 5:345–352

    CAS  Google Scholar 

  • Collins-Thompson D, Sørhaug T, Witter L, Ordal Z (1971) Glycerol ester hydrolase activity of Microbacterium thermosphactum. Appl Environ Microbiol 21:9–12

    CAS  Google Scholar 

  • Curic M, Stuer-Lauridsen B, Renault P, Nilsson D (1999) A general method for selection of α-acetolactate decarboxylase-deficient Lactococcus lactis mutants to improve diacetyl formation. Appl Environ Microbiol 65:1202–1206

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dainty R, Hibbard CM (1983) Precursors of the major end products of aerobic metabolism of Brochothrix thermosphacta. J Appl Microbiol 55:127–133

    CAS  Google Scholar 

  • De Bruyn IN, Louw AI, Visser L, Holzapfel WH (1987) Lactobacillus divergens is a homofermentative organism. Syst Appl Microbiol 9:173–175

    Google Scholar 

  • De Bruyn IN, Holzapfel WH, Visser L, Louw AI (1988) Glucose metabolism by Lactobacillus divergens. Microbiology 134:2103–2109

    Google Scholar 

  • Doulgeraki AI, Ercolini D, Villani F, Nychas G-JE (2012) Spoilage microbiota associated to the storage of raw meat in different conditions. Int J Food Microbiol 157:130–141

    PubMed  Google Scholar 

  • Ercolini D, Russo F, Torrieri E, Masi P, Villani F (2006) Changes in the spoilage-related microbiota of beef during refrigerated storage under different packaging conditions. Appl Environ Microbiol 72:4663–4671

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ercolini D, Russo F, Nasi A, Ferranti P, Villani F (2009) Mesophilic and psychrotrophic bacteria from meat and their spoilage potential in vitro and in beef. Appl Environ Microbiol 75:1990–2001

    CAS  PubMed  PubMed Central  Google Scholar 

  • Farber J (1991) Microbiological aspects of modified-atmosphere packaging technology—a review. J Food Prot 54:58–70

    CAS  PubMed  Google Scholar 

  • Faustman C, Cassens R (1990) The biochemical basis for discoloration in fresh meat: a review. J Muscle Foods 1:217–243

    Google Scholar 

  • Fernandez M, Zuniga M (2006) Amino acid catabolic pathways of lactic acid bacteria. Crit Rev Microbiol 32:155–183. https://doi.org/10.1080/10408410600880643

    Article  CAS  PubMed  Google Scholar 

  • Galperin MY, Makarova KS, Wolf YI, Koonin EV (2015) Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res 43:D261–D269. https://doi.org/10.1093/nar/gku1223

    Article  CAS  PubMed  Google Scholar 

  • García-Quintáns N, Blancato VS, Repizo GD, Magni C, López P (2008) Citrate metabolism and aroma compound production in lactic acid bacteria. In: Mayo B, López P, Pérez-Martíne G (eds) Molecular aspects of lactic acid bacteria for traditional and new applications, vol 3, pp 65–88

  • Gil A, Kroll RG, Poole RK (1992) The cytochrome composition of the meat spoilage bacterium Brochothrix thermosphacta: identification of cytochrome a3-and d-type terminal oxidases under various conditions. Arch Microbiol 158:226–233

    CAS  PubMed  Google Scholar 

  • Gram L, Ravn L, Rasch M, Bruhn JB, Christensen AB, Givskov M (2002) Food spoilage—interactions between food spoilage bacteria. Int J Food Microbiol 78:79–97

    PubMed  Google Scholar 

  • Halász A, Barath A, Simon-Sarkadi L, Holzapfel W (1994) Biogenic amines and their production by microorganisms in food. Trends Food Sci Technol 5:42–49

    Google Scholar 

  • Harvey R, Collins E (1963) Roles of citrate and acetoin in the metabolism of Streptococcus diacetilactis. J Bacteriol 86:1301–1307

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hilgarth M, Behr J, Vogel R (2018a) Monitoring of spoilage-associated microbiota on modified atmosphere packaged beef and differentiation of psychrophilic and psychrotrophic strains. J Appl Microbiol 124:740–753

    CAS  PubMed  Google Scholar 

  • Hilgarth M, Fuertes-Pèrez S, Ehrmann M, Vogel R (2018b) An adapted isolation procedure reveals Photobacterium spp. as common spoilers on modified atmosphere packaged meats. Lett Appl Microbiol 66:262–267. https://doi.org/10.1111/lam.12860

    Article  CAS  PubMed  Google Scholar 

  • Hilgarth M, Lehner E, Behr J, Vogel R (2019) Diversity and anaerobic growth of Pseudomonas spp. isolated from modified atmosphere packaged minced beef. J Appl Microbiol. https://doi.org/10.1111/jam.14249

    Article  PubMed  Google Scholar 

  • Hitchener BJ, Egan AF, Rogers P (1979) Energetics of Microbacterium thermosphactum in glucose-limited continuous culture. Appl Environ Microbiol 37:1047–1052

    CAS  PubMed  PubMed Central  Google Scholar 

  • Höll L, Behr J, Vogel R (2016) Identification and growth dynamics of meat spoilage microorganisms in modified atmosphere packaged poultry meat by MALDI-TOF MS. Food Microbiol 60:84–91

    PubMed  Google Scholar 

  • Höll L, Hilgarth M, Geissler AJ, Behr J, Vogel RF (2019) Prediction of in situ metabolism of photobacteria in modified atmosphere packaged poultry meat using metatranscriptomic data. Microbiol Res 222:52–59

    PubMed  Google Scholar 

  • Illikoud N et al (2019) Genotypic and phenotypic characterization of the food spoilage bacterium Brochothrix thermosphacta. Food Microbiol 81:22–31

    PubMed  Google Scholar 

  • Jiménez S, Salsi M, Tiburzi M, Rafaghelli R, Tessi M, Coutaz V (1997) Spoilage microflora in fresh chicken breast stored at 4 C: influence of packaging methods. J Appl Microbiol 83:613–618

    PubMed  Google Scholar 

  • Jones RJ (2004) Observations on the succession dynamics of lactic acid bacteria populations in chill-stored vacuum-packaged beef. Int J Food Microbiol 90:273–282

    PubMed  Google Scholar 

  • Kakouri A, Nychas G (1994) Storage of poultry meat under modified atmospheres or vacuum packs: possible role of microbial metabolites as indicator of spoilage. J Appl Bacteriol 76:163–172

    CAS  PubMed  Google Scholar 

  • Kameník J (2013) The microbiology of meat spoilage: a review. In. Department of Meat Hygiene and Technology. University of Veterinary and Pharmaceutical Sciences, Brno. Czech Republic

  • Labadie J (1999) Consequences of packaging on bacterial growth. Meat is an ecological niche. Meat Sci 52:299–305

    CAS  PubMed  Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. https://doi.org/10.1038/nmeth.1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laursen BG et al (2005) Carnobacterium divergens and Carnobacterium maltaromaticum as spoilers or protective cultures in meat and seafood: phenotypic and genotypic characterization. Syst Appl Microbiol 28:151–164

    CAS  PubMed  Google Scholar 

  • Leisner J (1992) Characterisation of lactic acid bacteria isolated from lightly preserved fish products and their ability to metabolise various carbohydrates and amino acids. Ph.D.thesis, Royal Veterinary and Agricultural University, Copenhagen, Denmark

  • Leisner JJ, Laursen BG, Prévost H, Drider D, Dalgaard P (2007) Carnobacterium: positive and negative effects in the environment and in foods. FEMS Microbiol Rev 31:592–613

    CAS  PubMed  Google Scholar 

  • Li H et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079. https://doi.org/10.1093/bioinformatics/btp352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Fang P, Mai J, Choi ET, Wang H, Yang X-f (2013) Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. J Hematol Oncol 6:19

    CAS  PubMed  PubMed Central  Google Scholar 

  • Madamanchi NR, Runge MS (2007) Mitochondrial dysfunction in atherosclerosis. Circ Res 100:460–473

    CAS  PubMed  Google Scholar 

  • McKee L (2007) Microbiological and sensory properties of fresh and frozen poultry. In: Nollet LML (ed) Handbook of meat, poultry and seafood quality. Blackwell Publishing, Ames. https://doi.org/10.1002/9780470277829.ch38

    Chapter  Google Scholar 

  • Mejlholm O, Bøknæs N, Dalgaard P (2005) Shelf life and safety aspects of chilled cooked and peeled shrimps (Pandalus borealis) in modified atmosphere packaging. J Appl Microbiol 99:66–76

    CAS  PubMed  Google Scholar 

  • Meredith H, Valdramidis V, Rotabakk BT, Sivertsvik M, McDowell D, Bolton DJ (2014) Effect of different modified atmospheric packaging (MAP) gaseous combinations on Campylobacter and the shelf-life of chilled poultry fillets. Food Microbiol 44:196–203. https://doi.org/10.1016/j.fm.2014.06.005

    Article  CAS  PubMed  Google Scholar 

  • Naila A, Flint S, Fletcher G, Bremer P, Meerdink G (2010) Control of biogenic amines in food—existing and emerging approaches. J Food Sci 75:R139–R150. https://doi.org/10.1111/j.1750-3841.2010.01774.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nowak A, Czyzowska A (2011) In vitro synthesis of biogenic amines by Brochothrix thermosphacta isolates from meat and meat products and the influence of other microorganisms. Meat Sci 88:571–574

    CAS  PubMed  Google Scholar 

  • Nowak A, Rygala A, Oltuszak-Walczak E, Walczak P (2012) The prevalence and some metabolic traits of Brochothrix thermosphacta in meat and meat products packaged in different ways. J Sci Food Agric 92:1304–1310. https://doi.org/10.1002/jsfa.4701

    Article  CAS  PubMed  Google Scholar 

  • Nychas G, Skandamis P (2005) Fresh meat spoilage and modified atmosphere packaging (MAP). In: Sofos JN (ed) Improving the safety of fresh meat, 1st edn. CRC/Woodhead Publishing Limited, Cambridge, pp 461–502

    Google Scholar 

  • Nychas GJ, Tassou CC (1997) Spoilage processes and proteolysis in chicken as detected by HPLC. J Sci Food Agric 74:199–208

    CAS  Google Scholar 

  • Nychas G-JE, Skandamis PN, Tassou CC, Koutsoumanis KP (2008) Meat spoilage during distribution. Meat Sci 78:77–89

    PubMed  Google Scholar 

  • Pin C, de Fernando GDG, Ordóñez JA (2002) Effect of modified atmosphere composition on the metabolism of glucose by Brochothrix thermosphacta. Appl Environ Microbiol 68:4441–4447

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman MS (1999) Postharvest Handling of Foods of Animal Origin. In: Rahman MS (ed) Handbook of food preservation, 2nd edn. Marcel Decker, New York, pp 47–73

    Google Scholar 

  • Rattanasomboon N et al (1999) Growth and enumeration of the meat spoilage bacterium Brochothrix thermosphacta. Int J Food Microbiol 51:145–158

    CAS  PubMed  Google Scholar 

  • Rossaint S, Klausmann S, Kreyenschmidt J (2015) Effect of high-oxygen and oxygen-free modified atmosphere packaging on the spoilage process of poultry breast fillets. Poult Sci 94:96–103. https://doi.org/10.3382/ps/peu001

    Article  CAS  PubMed  Google Scholar 

  • Rouger A, Tresse O, Zagorec M (2017) Bacterial contaminants of poultry meat: sources, species, and dynamics. Microorganisms. https://doi.org/10.3390/microorganisms5030050

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruiz-Capillas C, Jiménez-Colmenero F (2004) Biogenic amine content in Spanish retail market meat products treated with protective atmosphere and high pressure. Eur Food Res Technol 218:237–241

    CAS  Google Scholar 

  • Russell S, Fletcher D, Cox N (1995) Spoilage bacteria of fresh broiler chicken carcasses. Poult Sci 74:2041–2047

    CAS  PubMed  Google Scholar 

  • Russo F, Ercolini D, Mauriello G, Villani F (2006) Behaviour of Brochothrix thermosphacta in presence of other meat spoilage microbial groups. Food Microbiol 23:797–802

    CAS  PubMed  Google Scholar 

  • Sante V, Renerre M, Lacourt A (1994) Effect of modified atmosphere packaging on color stability and on microbiology of Turkey Breast meat. J Food Qual 17:177–195. https://doi.org/10.1111/j.1745-4557.1994.tb00142.x

    Article  CAS  Google Scholar 

  • Sedewitz B, Schleifer K-H, Götz F (1984) Purification and biochemical characterization of pyruvate oxidase from Lactobacillus plantarum. J Bacteriol 160:273–278

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shaw B, Harding CD (1984) A numerical taxonomic study of lactic acid bacteria from vacuum-packed beef, pork, lamb and bacon. J Appl Bacteriol 56:25–40

    CAS  PubMed  Google Scholar 

  • Singh S, McAvoy J, Garrett A, Egan A, Rogers P (1993) Pathways of pyruvate metabolism and energetics of growth of Brochothrix thermosphacta. World J Microbiol Biotechnol 9:361–365

    CAS  PubMed  Google Scholar 

  • Stanborough T, Fegan N, Powell SM, Tamplin M, Chandry PS (2017) Insight into the genome of Brochothrix thermosphacta, a problematic meat spoilage bacterium. Appl Environ Microbiol 83:e02786–e027816

    PubMed  PubMed Central  Google Scholar 

  • Stanbridge LH, Davies AR (1998) The microbiology of chill-stored meat. In: Davies A, Board R (eds) The microbiology of meat and poultry, 1st edn. Blackie Academic & Professional, London, pp 174–219

    Google Scholar 

  • Takahashi N, Abbe K, Takahashi-Abbe S, Yamada T (1987) Oxygen sensitivity of sugar metabolism and interconversion of pyruvate formate-lyase in intact cells of Streptococcus mutans and Streptococcus sanguis. Infect Immun 55:652–656

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu S, Zhu Z, Fu L, Niu B, Li W (2011) WebMGA: a customizable web server for fast metagenomic sequence analysis. BMC Genom 12:444. https://doi.org/10.1186/1471-2164-12-444

    Article  Google Scholar 

Download references

Acknowledgements

A part this work was funded by the German Federal Ministry for Economic Affairs and Energy via the German Federation of Industrial Research Associations (AiF) and the Industry Association for Food Technology and Packaging (IVLV); projects number AiF 17803N and 19993N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudi F. Vogel.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by Erko Stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

203_2020_1914_MOESM1_ESM.pptx

Relative abundance of taxa within the different samples based on 16S rRNA mapping (taxa with > 2% in any of the samples are shown). Photobacterium (purple), Brochothrix (turquoise), Carnobacterium (orange), Other Vibrionaceae (Vibrio, Aliivibrio, Enterovibrio) (dark purple), Enterococcus (dark blue), Others (grey) (PPTX 38 kb)

203_2020_1914_MOESM2_ESM.pptx

Frequency distribution of the normalized gene counts dependent of mean values of B. thermosphacta (A) and C. divergens (B) (PPTX 41 kb)

203_2020_1914_MOESM3_ESM.pptx

Visualization of gene expression analysis of B. thermosphacta in dependence of the upper 10% of the mean values of normalized counts (473 genes). Genes were considered as differentially expressed (marked red) in O2/CO2 MAP or in N2/CO2 MAP with a log2 fold change of > 1 or < -1, respectively (PPTX 82 kb)

203_2020_1914_MOESM4_ESM.pptx

: Visualization of gene expression analysis of C. divergens in dependence of the upper 10% of the mean values of normalized counts (391 genes). Genes were considered as differentially expressed (marked red) in O2/CO2 MAP or in N2/CO2 MAP with a log2 fold change of > 1 or < -1, respectively (PPTX 73 kb)

203_2020_1914_MOESM5_ESM.xlsx

16S rRNA bowtie alignment for creation of a genome selection for mapping of transcripts (at least 5 paired-end properly paired reads). (XLSX 18 kb)

203_2020_1914_MOESM6_ESM.xlsx

The upper 10% normalized gene counts of B. thermosphacta with respective KEGG orthology, annotation, base mean, log2 fold change and p value (XLSX 33 kb)

203_2020_1914_MOESM7_ESM.xlsx

The upper 10% normalized gene counts of C. divergens with respective KEGG orthology, annotation, base mean, log2 fold change and p-value (XLSX 37 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Höll, L., Hilgarth, M., Geissler, A.J. et al. Metatranscriptomic analysis of modified atmosphere packaged poultry meat enables prediction of Brochothrix thermosphacta and Carnobacterium divergens in situ metabolism. Arch Microbiol 202, 1945–1955 (2020). https://doi.org/10.1007/s00203-020-01914-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-020-01914-y

Keywords

Navigation