Skip to main content
Log in

Microbial N-cycling gene abundance is affected by cover crop specie and development stage in an integrated cropping system

  • Short Communication
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Grasses of the Urochloa genus have been widely used in crop-livestock integration systems or as cover crops in no-till systems such as in rotation with maize. Some species of Urochloa have mechanisms to reduce nitrification. However, the responses of microbial functions in crop-rotation systems with grasses and its consequence on soil N dynamics are not well-understood. In this study, the soil nitrification potential and the abundance of ammonifying microorganisms, total bacteria and total archaea (16S rRNA gene), nitrogen-fixing bacteria (NFB, nifH), ammonia-oxidizing bacteria (AOB, amoA) and archaea (AOA, amoA) were assessed in soil cultivated with ruzigrass (Urochloa ruziziensis), palisade grass (Urochloa brizantha) and Guinea grass (Panicum maximum). The abundance of ammonifying microorganisms was not affected by ruzigrass. Ruzigrass increased the soil nitrification potential compared with palisade and Guinea grass. Ruzigrass increased the abundance of N-fixing microorganisms at the middle and late growth stages. The abundances of nitrifying microorganisms and N-fixers in soil were positively correlated with the soil N–NH4+ content. Thus, biological nitrogen fixation might be an important input of N in systems of rotational production of maize with forage grasses. The abundance of microorganisms related to ammonification, nitrification and nitrogen fixing and ammonia-oxidizing archea was related to the development stage of the forage grass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Bakke I, Schryver P, Boon N, Vadstein O (2011) PCR-based community structure studies of bacteria associated with eukaryotic organisms: a simple PCR strategy to avoid co-amplification of eukaryotic DNA. J Microbiol Methods 84:349–351. https://doi.org/10.1016/j.mimet.2010.12.015

    Article  CAS  PubMed  Google Scholar 

  • Boddey RM, Victoria RL (1986) Estimation of biological nitrogen fixation associated with Brachiaria and Paspalum grasses using15N labelled organic matter and fertilizer. Plant Soil 90:265–292. https://doi.org/10.1007/BF02277403

    Article  CAS  Google Scholar 

  • Brody JR, Kern SE (2004) Sodium boric acid: a Tris-free cooler conductive medium for DNA electrophoresis. Biotechniques 36:214–216. https://doi.org/10.2144/04362BM02

    Article  CAS  PubMed  Google Scholar 

  • Byrnes RC, Núñez J, Arenas L, Rao I, Trujillo C, Alvarez C, Arango J, Rasche F, Chirinda N (2017) Biological nitrification inhibition by Brachiaria grasses mitigates soil nitrous oxide emissions from bovine urine patches. Soil Biol Biochem 107:156–163. https://doi.org/10.1016/j.soilbio.2016.12.029

    Article  CAS  Google Scholar 

  • Cantarella H (2007) Nitrogênio. In: Novais RF, Alvarez VH, Barros NF, Fontes RLF, Cantarutti RB, Neves JCL (eds) Fertilidade do solo. Sociedade Brasileira de Ciência do Solo, Viçosa, pp 375–470

  • Echer FR, Castro GSA, Bogiani JC, Rosolem CA (2012) Crescimento inicial e absorção de nutrientes pelo algodoeiro cultivado sobre a palhada de Brachiaria ruziziensis. Planta Daninha 30:783–790. https://doi.org/10.1590/S0100-83582012000400012

    Article  Google Scholar 

  • Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley B (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci 102:14683–14688

    Article  CAS  Google Scholar 

  • Herrmann M, Scheibe A, Avrahami S, Küsel K (2011) Ammonium availability affects the ratio of ammonia-oxidizing bacteria to ammonia-oxidizing archaea in simulated creek ecosystems. Appl Environ Microbiol 77:1896–1899. https://doi.org/10.1128/AEM.02879-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keeney DR, Nelson DW (1982) Nitrogen: inorganic forms. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis. American Society of Agronomy, Madison, pp 625–642

    Google Scholar 

  • Kluthcouski J, Aidar H (2003) Implantação, condução e resultados obtidos com o sistema Santa Fé. In: Kluthcouski J, Stone LF, Aidar H (eds) Integração lavoura—pecuária. Embrapa Arroz e Feijão, Santo Antônio de Goiás, pp 407–441

    Google Scholar 

  • López A, Jesus HS, Rocha MM, Fries M, Urquiaga S, Alves BJR (1998) Diagnóstico do potencial de nitrificação e desnitrificação em solo sob pastagens de Brachiaria sp. solo sob plantio direto e convencional. Embrapa Agrobiologia, Seropédica (Série Documentos, no. 78)

  • Marques LM, Crusciol CAC, Soratto RP, Vyn T, Tanaka KS, Costa CHM, Ferrari Neto J, Cantarella H (2019) Impacts of nitrogen management on no–till maize production following forage cover crops. Agron J 111:1–11. https://doi.org/10.2134/agronj2018.03.0201

    Article  CAS  Google Scholar 

  • Mertens M, Höss S, Neumann G, Afzal J, Reichenbecher W (2018) Glyphosate, a chelating agent—relevant for ecological risk assessment? Environ Sci Pollut Res. https://doi.org/10.1007/s11356-017-1080-1

    Article  Google Scholar 

  • Miranda CHB, Urquiaga S, Boddey RM (1990) Selection of ecotypes of Panicum maximum for associated biological nitrogen fixation using the 15N isotope dilution technique. Soil Biol Biochem 22:657–663. https://doi.org/10.1016/0038-0717(90)90012-O

    Article  CAS  Google Scholar 

  • Raij B, Andrade JC, Cantarella H, Quaggio JÁ (2001) Análise química para avaliação da fertilidade de solos tropicais. Campinas, Instituto Agronômico

  • Reis VM, Reis FB Jr, Quesada DM, Oliveira OCA, Alves BJR, Urquiaga S, Boddey RM (2001) Biological nitrogen fixation associated with tropical pasture grasses. Aust J Plant Physiol 28:837–844. https://doi.org/10.1071/PP01079

    Article  Google Scholar 

  • Roesch LFW, Passaglia LMP, Bento FM, Triplett EW, Camargo FAO (2007) Diversidade de bactérias diazotróficas endofíticas associadas a plantas de milho. Rev Bras Cienc Solo 31:1367–1380. https://doi.org/10.1590/S0100-06832007000600015

    Article  CAS  Google Scholar 

  • Rösch C, Mergel A, Bothe H (2002) Biodiversity of denitrifying and dinitrogen-fixing bacteria in an acid forest soil. Appl Environ Microb 68:3818–3829. https://doi.org/10.1128/AEM.68.8.3818-3829.2002

    Article  CAS  Google Scholar 

  • Rotthauwe JH, Boer W, Liesack W (1997) The ammonia monoxygenase structural gene amoA as a functional marker: molecular fine scale analyses of natural ammonia oxidizing populations. Appl Environ Microbiol 63:4704–4712

    Article  CAS  Google Scholar 

  • SAS Institute Inc. (2009) The SAS System for Windows. SAS 9.2. SAS Inst., Cary

  • Subbarao GV, Nakahara K, Hurtado MP, Ono H, Moreta DE, Salcedo AF, Yoshihashi T, Ishitani M, Ohnishi-Kameyama M, Yoshida M, Rondon M, Rao IM, Lascano CE, Berry WL, Ito O (2009) Evidence for biological nitrification inhibition in Brachiaria pastures. Proc Natl Acad Sci USA 106:17302–17307. https://doi.org/10.1073/pnas.0903694106

    Article  PubMed  Google Scholar 

  • Úlehlová B, Kunc F, Vancura V (1988) Nutrition and energy sources of microbial populations in ecosystems. In: Vancura V, Kunc F (eds) Soil microbial associations. Elsevier, New York, pp 15–156

    Google Scholar 

  • USDA—United States Department of Agriculture (2010) Keys to soil taxonomy, 11th edn., p 338

  • Woomer PL (1994) Most Probable Number Counts. In: Weaver RW, et al. (eds) Methods of soil analysis, part 2: microbiological and biochemical properties. Soil Science Society of America, Madison, pp 59–79

    Google Scholar 

  • Yu Y, Lee C, Kim J, Hwang S (2005) Group specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnol Bioeng 89:670–679. https://doi.org/10.1002/bit.20347

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was undertaken as part of NUCLEUS: a virtual joint center to deliver enhanced nitrogen use efficiency via an integrated soil–plant systems approach for the UK & Brazil, funded in São Paulo by FAPESP—São Paulo Research Foundation (Grant 2015/50305-8) and in the UK by the BBRSC/Newton Fund (BB/N013201/1). Publication number XXXX of the NIOO-KNAW, Netherlands Institute of Ecology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ciro Antonio Rosolem.

Ethics declarations

Conflict of interest

The authors declare that there are no conflict of interest.

Additional information

Communicated by Erko Stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rocha, K.F., Kuramae, E.E., Borges, B.M.F. et al. Microbial N-cycling gene abundance is affected by cover crop specie and development stage in an integrated cropping system. Arch Microbiol 202, 2005–2012 (2020). https://doi.org/10.1007/s00203-020-01910-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-020-01910-2

Keywords

Navigation