Skip to main content
Log in

Determination of bioremediation properties of soil-borne Bacillus sp. 5O5Y11 and its effect on the development of Zea mays in the presence of copper

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Today, industrial activities lead to the accumulation of heavy metals in the soil, water, and air due to mine deposits and operations, fertilizers, and drugs used in agriculture, and urban wastes. Using microorganism bioremediation of metals is an important technique in solving these problems. Herein, a rhizoid bacterium isolated from orchids that grow in Ovit plateau was defined as Bacillus sp. 5O5Y11 by conventional and molecular methods and the bioremediation properties of strain were investigated. It was capable of growth at high salt (10–15%) concentration, wide temperature (10–45 °C) and pH range (pH 4.5–8.0), and was observed to have strong lecithinase, gelatinase activity, and nitrate reduction. When the plant growth-promoting properties of this strain were examined, strong siderophore and ammonium production were observed in in vitro conditions. Bacillus sp. 5O5Y11 was found to have high tolerance to a group of heavy metals [iron (Fe), copper (Cu), lead (Pb), silver (Ag), zinc (Zn)]. Minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC) values of copper metal on Bacillus sp. 5O5Y11 were determined as 12.5 mM and 50 mM, respectively. The effectiveness of this bacterium on the germination and growth of maize plant in the presence and absence of copper were investigated. These results suggest that Bacillus sp. 5O5Y11 is a microorganism, which has potential in metal bioremediation and plant growth promotion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akshatha Jain N, Udayashankara TH, Lokesh KS, Sudarshan BL (2017) Bioremediation of lead, nickel and copper by metal resistant Bacillus licheniformis ısolated from mining site: optimization of operating parameters under laboratory conditions. IMPACT 5(5):13–32

    Google Scholar 

  • Albarracin VG, Amoroso MJ, Abate CM (2010) Bioaugmentation of copper polluted soil microcosms with Amycolatopsis tucumanensis to diminish phytoavailable copper for Zea mays plants. Chemosphere 79:131–137

    CAS  PubMed  Google Scholar 

  • Alexander DB, Zuberer DA (1991) Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol Fertil Soils 12:39–45

    CAS  Google Scholar 

  • Aydoğan MN, Algur ÖM, Özdemir M (2013) Isolation and characterisation of some bacteria and microfungus solving tricalcium phosphate. Atatürk Üniversitesi Biyoloji Bölümü 1:11–20

    Google Scholar 

  • Baker GC, Smith JJ, Cowan DA (2003) Review and re-analysis of domain-specific 16S primers. J Microbiol Methods 55:541–555

    CAS  PubMed  Google Scholar 

  • Benimeli CS, Fuentes MS, Abate CM, Amoroso MJ (2008) Bioremediation of lindane-contaminated soil by Streptomyces sp. M7 and its effects on Zea mays growth. Int Biodeter Biodegr 61:233–239

    CAS  Google Scholar 

  • Brown LF, Harrist TJ, Yeo KT, Stahle-Backdahi M, Jackman RW, Berse B, Tognazzi K, Dvorak HF, Detmar M (1995) Increased expression of vascular permeability factor (vascular endothelial growth factor) in bullous pemphigoid, dermatitis herpetiformis, and erythema multiforme. J Invest Dermatol 104(5):744–749

    CAS  PubMed  Google Scholar 

  • Chaney RL (1997) Phytoremediation of soil metals. Curr Opin Biotechnol 8(3):279–284

    CAS  PubMed  Google Scholar 

  • Chen P, Ting YP (1995) Effect of heavy metal uptake on the electrokinetic properties of Saccharomyces cerevisiae. Biotechnol Lett 17(1):107–112

    CAS  Google Scholar 

  • Cornejo P (2017) Contribution of inoculation with arbuscular mycorrhizal fungi to the bioremediation of a copper contaminated soil using Oenothera picensi. J Soil Sci Plant Nutr 17(1):14–21

    CAS  Google Scholar 

  • Dixon R, Kahn D (2004) Genetic regulation of biological nitrogen fixation. Nat Rev Microbiol 2:621–631

    CAS  PubMed  Google Scholar 

  • Dworken M, Foster J (1958) Experiments with some microorganisms which utilize ethane and hydrogen. J Bacteriol 75:592–601

    Google Scholar 

  • Elsilk S, El-shanshoury A, Ateya S (2014) Accumulation of some heavy metals by metal resistant avirulent Bacillus antracis PS2010 isolat from Egypt. Afr J Microbiol Res 8(12):1266–1276

    CAS  Google Scholar 

  • Franche C, Lindström K, Elmerich C (2009) Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil 321:35–59

    CAS  Google Scholar 

  • Francis I, Holsters M, Vereecke D (2010) The grampositive side of plant microbe interactions. Environ Microbial 1:1–12

    Google Scholar 

  • Fuentes-Ramirez L, Caballero-Mellado J (2006) Bacterial biofertilisers. In: Siddiqui A (ed) PGPR: Biocontrol and Biofertilization. Springer-Verlag, Dordrecht, pp 143–172

    Google Scholar 

  • Fürnkranz M, Müller H, Berg G (2009) Characterization of plant growth promoting bacteria from crops in Bolivia. J Plant Dis Protect 116(4):149–155

    Google Scholar 

  • Godfray H, Charles J (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818

    CAS  PubMed  Google Scholar 

  • Gupta A, Meyer JM, Goel R (2002) Development of heavy metal-resistant mutants of phosphate-solubilizing Pseudomonas sp. NBRI 4014 and their characterization. Curr Microbiol 45:323–327

    CAS  PubMed  Google Scholar 

  • Hafez MB, Fouad A, El-Desouky W (2002) Accumulation of some metal ions on Bacillus licheniformis. J Radioanal Nucl Chem 2:249–252. https://doi.org/10.1023/A:1014860125739

    Article  Google Scholar 

  • Halstead RL, Finn BJ, Mclean AJ (1969) Extractibility of Nickel added to the soils and its concentration in plants. Can J Soil Sci 49:335–342

    CAS  Google Scholar 

  • Harris ED (2000) Cellular copper transport and metabolism. Annu Rev Nutr 20:291–310

    CAS  PubMed  Google Scholar 

  • Holt JG, Krieg NR, Sneath PHA, Stanley JT, Williams ST (1994) Bergey's manual of determinative bacteriology. Williams and Wilkins Co., Baltimor

    Google Scholar 

  • Huang JW, Cunninghams SD (1996) Lead phytoextraction: species variation in lead uptake and translocation. New Phytol 134(1):75–84

    CAS  Google Scholar 

  • Jézéquel K, Lebeau T (2008) Soil bioaugmentation by free and inmobilized bacteria to reduce potentially phytoavailable cadmium. Bioresour Technol 99:690–698

    PubMed  Google Scholar 

  • Kai M, Hausteın M, Molina F, Petri EA, Scholz B, Piechulla B (2009) Bacterial volaties anf their action. App Microbiol Biotechnol 81:1001–1012

    CAS  Google Scholar 

  • Karapire M, Ozgonen H (2013) Doğada yararlı mikroorganizmalar arasındaki etkileşimler ve tarımsal üretimde önemi. Türk Bilimsel Derlemeler Dergisi 6(2):149–157

    Google Scholar 

  • Karunakaran G, Suriyaprabha R, Manivasakan P, Yuvakkumar R, Rajendran V, Prabu P, Kannan N (2013) Effect of nanosilica and silicon sources on plant growth promoting rhizobacteria, soil nutrients and maize seed germination. IET Nanobiotechnol 7(3):70–77

    CAS  PubMed  Google Scholar 

  • Kefeng L, Ramakrishna W (2011) Effect of multiple metal resistant bacteria from contaminated lake sediments on metal accumulation and plant growth. J Hazard Mater 189(1–2):531–539

    Google Scholar 

  • Kloepper JW, Lifshitz K, Zablotowicz RM (1989) Free living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7:39–43

    Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    Article  CAS  Google Scholar 

  • Lin Q, Shen KL, Zhao HM, Li WH (2008) Growth response of Zea mays L. in pyrene-copper co-contaminated soil and the fate of pollutants. J Hazard Mater 150(3):515–521

    CAS  PubMed  Google Scholar 

  • Liu Y, Liao T, He Z, Li T, Wang H, Hu X, Guo Y, He Y (2013) Biosorption of copper (II) from aqueous solution by Bacillus subtilis cells immobilized into chitosan beads. Trans Nonferrous Metal Soc 23:1804–1814

    CAS  Google Scholar 

  • Logan NA, Vos PD (2015) Bacillus. In: Whitman WB, Rainey F, Kämpfer P, Trujillo M, Chun J, Vos PD, Hedlund B, Dedysh S (eds) Bergey’s manual of systematics of archaea and bacteria. Wiley, Amsterdam. https://doi.org/10.1002/9781118960608.gbm00530

    Chapter  Google Scholar 

  • López-Malo A (2000) Probabilistic modeling of Saccharomyces cerevisiae inhibition under the effects of water activity, pH, and potassium sorbate concentration. J Food Protect 63(1):91–95

    Google Scholar 

  • Lucy M, Reed E, Glick BR (2004) Application of Free Living Plant Growth-Promoting Rhizobacteria. Antonie van Leeuwenhoek. Kluwer Academic Publishers, Netherlands, pp 1–25

    Google Scholar 

  • National Committee for Clinical Laboratory Standards (NCCLS) (1999) Methods for determining bactericidal activity of antimicrobial agents. NCCLS document M26-A, vol 19, no. 18. National Committee for Clinical Laboratory Standards, Villanova, PA (ISBN 1-56238-384-1, ISSN 0273-3099)

  • Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726

    CAS  PubMed  Google Scholar 

  • Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51(6):730–750

    CAS  PubMed  Google Scholar 

  • Oves M, Khan MS, Zaidi A (2013) Biosorption of heavy metals by Bacillus thuringiensis strain OSM29 originating from industrial effluent contaminated north Indian soil. Saudi J of Biol Sci 20:121–129

    CAS  Google Scholar 

  • Pardo R, Herguedas M, Barrado E, Vega M (2003) Biosorption of cadmium, copper, lead and zinc by inactive biomass of Pseudomonas putida. Anal Bioanal Chem 376:26–32

    CAS  PubMed  Google Scholar 

  • Peer WA, Baxter IR, Richards EL, Freeman JL, Murphy AS (2006) Molecular biology of metal homeostasis and detoxification. In: Tamas MJ, Martinoia E (eds) From microbes to man. Springer, Berlin. https://doi.org/10.1007/b98249

    Chapter  Google Scholar 

  • Rani MJ, Hemambika B, Hemapriya J, Kannan VR (2010) Comparative assessment of heavy metal removal by immobilized and dead bacterial cells: a biosorption approach. Glob J Environ Res 4:77–83

    Google Scholar 

  • Rivas R, Velázquez E, Zurdo-Piñeiro JL, Mateos PF, Martínez Molina E (2004) Identification of microorganisms by PCR amplification and sequencing of a universal amplified ribosomal region present in both prokaryotes and eukaryotes. J Microbiol Methods 56(3):413–426

    CAS  PubMed  Google Scholar 

  • Sambrook J, Fritschi EF, Maniatis T (1989) Molecular Cloning: A Laboratory. CSHL Press, New York (ISBN-978-1936113-42-2)

    Google Scholar 

  • Sarma H (2011) Metal hyperaccumulation in plants: a review focusing on phytoremediation technology. J Environ Sci Technol 4:118–138

    CAS  Google Scholar 

  • Schallmey M, Singh A, Ward OP (2004) Developments in the use of Bacillus species for industrial production. Can J Microbiol 50(1):1–17

    CAS  PubMed  Google Scholar 

  • Selvi A, Anjugam E, Archana D, Madhan RB, Kannappan S, Chandrasekaran B (2012) Isolation and characterization of bacteria from tannery effluent treatment plant and their tolerance to heavy metals and antibiotics. Asian J Exp Biol Sci 3:34–41

    CAS  Google Scholar 

  • Stresty TVS, Madhava Rao KV (1999) Ultrastructural alterations in response to zinc and nickel stress in the root cell of pigeonpea. Environ Exp Bot 41:3–13

    Google Scholar 

  • Sultan S, Hasnain S (2006) Characterization of an Ochrobactrum intermedium strain STCr-5 manifesting high level Cr(VI) resistance and reduction potential. Enzyme Microb Technol 39:883–888

    CAS  Google Scholar 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    CAS  PubMed  Google Scholar 

  • Velásquez L, Dussan J (2009) Biosorption and bioaccumulation of heavy metals on dead and living biomass of Bacillus sphaericus. J Hazard Mater 167:713–716

    PubMed  Google Scholar 

  • Visoottiviseth P, Francesconi K, Sridokchan W (2002) The potential of Thai indigenous plant species for the phytoremediation of arsenic contaminated land. Environ Pollut 118(3):453–461

    CAS  PubMed  Google Scholar 

  • Von Rad U, Klein I, Dobrev PI, Kottova J, Fekete A, Hartman A, Schmitt-Kopplin P, Durner J (2008) Response of Arabidopsis thaliana to N-hexanoly-DL-homoserine-lactone, a bacterial quorum sensing molecule produced in the rhizosphere. Planta 229:73–85

    CAS  Google Scholar 

  • Wei GH, Fan LM, Zhu WF, Fu YY, Yu JF, Tang M (2009) Isolation and characterization of the heavy metal resistant bacteria CCNWRS33-2 isolated from root nodule of Lespedeza cuneata in gold mine tailings in China. J Hazard Mater 162:50–56

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by Recep Tayyip Erdoğan University, Scientific Research Projects Unit [Project No: 2015.53002.102.03.01]. We thank Elif Sevim for suggestion of Genbank similarity of 5O5Y11 strain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Şengül Alpay Karaoğlu.

Additional information

Communicated by Erko Stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Üreyen Esertaş, Ü.Z., Uzunalioğlu, E., Güzel, Ş. et al. Determination of bioremediation properties of soil-borne Bacillus sp. 5O5Y11 and its effect on the development of Zea mays in the presence of copper. Arch Microbiol 202, 1817–1829 (2020). https://doi.org/10.1007/s00203-020-01900-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-020-01900-4

Keywords

Navigation