Skip to main content

Advertisement

Log in

Marine bacteria associated with shallow hydrothermal systems in the Gulf of California with the capacity to produce biofilm inhibiting compounds

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Shallow hydrothermal systems are extreme environments. The sediments and fluids emitted from the vents present unusual physical and chemical conditions compared to other marine areas, which promotes unique biodiversity that has been of great interest for biotechnology for some years. In this work, a bioprospective study was carried out to evaluate the capacity of bacteria associated with shallow hydrothermal vents to produce biofilm-inhibiting compounds. Degradation assays of N-acyl homoserine lactone (AHL) autoinducers (C6HSL) involved in the quorum sensing process were carried out on 161 strains of bacteria isolated from three shallow hydrothermal systems located in Baja California Sur (BCS), Mexico. The biosensor Chromobacterium violaceum CV026 was used. Twenty-three strains showed activity, and organic extracts were obtained with ethyl acetate. The potential of the extracts to inhibit the formation of biofilms was tested against two human pathogenic strains (Pseudomonas aeruginosa PAO1 and Aeromonas caviae ScH3), a shrimp pathogen (Vibrio parahaemolyticus M8), and two marine strains identified as producing biofilms on submerged surfaces (Virgibacillus sp C29 and Vibrio alginolyticus C96). The results showed that Vibrio alginolyticus and Brevibacillus thermoruber, as well as some thermotolerant strains (mostly Bacillus), produce compounds that inhibit bacterial biofilms (B. licheniformis, B. paralicheniformis, B. firmus, B. oceanizedimenis, B. aerius and B. sonorensis).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Álvarez B, Secades P, Prieto M, McBride MJ, Guijarro JA (2006) A mutation in Flavobacterium psychrophilum tlpB inhibits gliding motility and induces biofilm formation. Appl Environ Microb 72:4044–4053

    Google Scholar 

  • Austin JW, Sanders G, Kay WW, Collinson SK (1998) Thin aggregative fimbriae enhance Salmonella enteritidis biofilm formation. FEMS Microbiol Lett 162:295–301

    CAS  PubMed  Google Scholar 

  • Beloin C, Valle J, Latour-Lambert P, Faure P, Kzreminski M, Balestrino D, Ghigo JM (2004) Global impact of mature biofilm lifestyle on Escherichia coli K-12 gene expression. Mol Microbiol 51(3):659–674

    CAS  PubMed  Google Scholar 

  • Bhardwaj AK, Vinothkumar K, Rajpara N (2013) Bacterial quorum sensing inhibitors: attractive alternatives for control of infectious pathogens showing multiple drug resistance. Recent Pat Anti-Infect Drug Discov 8:68–83

    CAS  Google Scholar 

  • Bodini SF, Manfredini S, Ep M, Valentini S, Santori F (2009) Quorum sensing inhibition activity of garlic extract and p-coumaric acid. Lett Appl Microbiol 49:551–555

    CAS  PubMed  Google Scholar 

  • Brencic A, Winans SC (2005) Detection of and response to signals involved in host-microbe interactions by plant-associated bacteria. Microbiol Mol Biol R 69:155–194

    CAS  Google Scholar 

  • Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322

    CAS  PubMed  Google Scholar 

  • Dong YH, Zhang LH (2005) Quorum sensing and quorum-quenching enzymes. J Med Microbiol 43:101–109

    CAS  Google Scholar 

  • Dobretsov S, Teplitski M, Paul V (2009) Mini-review: quorum sensing in the marine environment and its relationship to biofouling. Biofouling 25(5):413–427

    CAS  PubMed  Google Scholar 

  • Fisher CR, Takai K, Le Bris N (2007) Hydrothermal vent ecosystems. Oceanography 20:14–23

    Google Scholar 

  • Givskov M, De Nys R, Manefield M, Gram L, Maximilien R, Eberl L, Molin S, Steinberg PD, Golberg K, Pavlo V, Marks RS, Kushmaro A (2013) Coral-associated bacteria, quorum sensing disrupters, and the regulation of biofouling. Biofouling 29:669–682

    Google Scholar 

  • Heilmann C, Hussain M, PetersGotz GF (1997) Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol Microbiol 24:1013–1024

    CAS  PubMed  Google Scholar 

  • Hua NP, Hamza-Chaffai A, Vreeland RH, Isoda H, Naganuma T (2008) Virgibacillus salarius sp. nov., a halophilic bacterium isolated from a Saharan Salt Lake. Int J Syst Evol Micr 58:2409–2414

    CAS  Google Scholar 

  • Jiang P, Li J, Han F, Duan G, Lu X, Gu Y, Yu W (2011) Antibiofilm activity of an exopolysaccharide from marine bacterium Vibrio sp. QY101. PLoS ONE 6:e18514

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson MR, Montero CI, Conners SB, Shockley KR, Bridger SL, Kelly RM (2005) Population density-dependent regulation of exopolysaccharide formation in the hyperthermophilic bacterium Thermotoga maritima. Mol Microbiol 55:664–674

    CAS  PubMed  Google Scholar 

  • Kalia VC, Purohit HJ (2011) Quenching the quorum sensing system: potential antibacterial drug targets. Crit Rev Microbiol 37(2):121–140

    CAS  PubMed  Google Scholar 

  • Kalia VC (2013) Quorum sensing inhibitors: an overview. Biotech Adv 31(2):224–245

    CAS  Google Scholar 

  • Kalpana BJ, Aarthy S, Pandian SK (2012) Antibiofilm activity of α-amylase from Bacillus subtilis S8–18 against biofilm forming human bacterial pathogens. Appl Biochem Biotech 167:1778–1794

    CAS  Google Scholar 

  • Khiyami MA, Serour EA, Shehata MM, Bahklia AH (2012) Thermo-aerobic bacteria from geothermal springs in Saudi Arabia. Afr J Biotechnol 11:4053–4062

    Google Scholar 

  • Klemm P, Schembri MA (2000) Bacterial adhesins: function and structure. Int J Med Microbiol 290:27–35

    CAS  PubMed  Google Scholar 

  • Kokare C, Chakraborty S, Khopade AN, Mahadik KR (2009) Biofilm: importance and applications. Indian J Biotechnol 8:159–168

    CAS  Google Scholar 

  • Kothari V, Patel P, Josh C (2017) Bioactive natural products: an overview, with particular emphasis on those possessing potential to inhibit microbial quorum sensing. In: Kalia VC (ed) Microbial Applications, vol 2. Delhi, pp 185–202

  • Leadbetter JR, Greenberg EP (2000) Metabolism of acyl-homoserine lactone quorum-sensing signals by Variovorax paradoxus. J Bacteriol 182:6921–6926

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lentini V, Gugliandolo C, Bunk B, Overmann J, Maugeri TL (2014) Diversity of prokaryotic community at a shallow marine hydrothermal site elucidated by Illumina sequencing technology. Curr Microbiol 69:457–466

    CAS  PubMed  Google Scholar 

  • Lule AD (2007) Participation of acyl homoserine lactone signal molecules, in swarming mobility in Vibrio spp, isolated from black mangrove roots Aviccenia germinans. Master thesis. Centro de Investigaciones Biológicas del Noroeste S.C. La Paz, Baja California Sur, México, p 95

  • Morohoshi T, Tominaga Y, Someya N, Ikeda T (2015) Characterization of a novel thermostable N-acylhomoserine lactonase from the thermophilic bacterium Thermaerobacter marianensis. J Biosci Bioeng 120:1–5

    CAS  PubMed  Google Scholar 

  • Ma Z, SongCai YZ, Lin Z, Lin G, Wang Y, Zhou J (2018) Anti-quorum sensing activities of selected coral symbiotic bacterial extracts from the South China Sea. Front Cell Infect Mi 8:144

    Google Scholar 

  • Martínez-Matamoros D, Laiton-Fonseca M, Duque C, Ramos FA, Castellanos L (2016) Búsqueda de bacterias marinas como fuente de inhibidores quorum sensing. Vitae 23:30–47

    Google Scholar 

  • Melvin JA, Montelaro RC, Bomberger JM (2016) Clinical potential of engineered cationic antimicrobial peptides against drug resistant biofilms. Expert Rev Anti Infect Ther 14(11):989–991

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ng FS, Wright DM, Seah SY (2011) Characterization of a phosphotriesterase-like lactonase from Sulfolobus solfataricus and its immobilization for disruption of quorum sensing. Appl Environ Microbiol 77(4):1181–1186

    CAS  PubMed  Google Scholar 

  • Ni N, Li M, Wan J, Wang B (2009) Inhibitors and antagonists of bacterial quorum sensing. Med Res Rev 29:65–124

    CAS  PubMed  Google Scholar 

  • Nichols JD, Johnson MR, Chou CJ, Kelly RM (2009) Temperature, not LuxS, mediates AI-2 formation in hydrothermal habitats. Fems Microbiol Ecol 68:173–181

    CAS  PubMed  Google Scholar 

  • Nithyanand P, Pandian SK (2009) Phylogenetic characterization of culturable bacterial diversity associated with the mucus and tissue of the coral Acropora digitifera from the Gulf of Mannar. Fems Microbiol Ecol 69:384–394

    CAS  PubMed  Google Scholar 

  • O’Toole GA, Kolter R (1998) Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30:295–304

    PubMed  Google Scholar 

  • Pratt LA, Kolter R (1998) Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 30:285–293

    CAS  PubMed  Google Scholar 

  • Radchenkova N, Tomova A, Kambourova M (2011) Biosynthesis of an exopolysaccharide produced by Brevibacillus thermoruber 438. Biotech Biotechnol Equip 25(1):77–79

    Google Scholar 

  • Reina JC, Pérez-Victoria Martín J, Llamas I (2019) A quorum-sensing inhibitor strain of vibrio alginolyticus blocks Qs-controlled phenotypes in Chromobacterium violaceum and Pseudomonas aeruginosa. Mari Drugs 17(9):494

    CAS  Google Scholar 

  • Rivardo F, Turner RJ, Allegrone G, Ceri H, Martinotti MG (2009) Anti-adhesion activity of two biosurfactants produced by Bacillus spp. prevents biofilm formation of human bacterial pathogens. App Microbiol Biot 83:541–553

    CAS  Google Scholar 

  • Rodelas B, Lithgow JK, Wisniewski-Dye F, Hardman A, Wilkinson A, Economou A, Williams P, Downie JA (1999) Analysis of quorum-sensing-dependent control of rhizosphere-expressed (rhi) genes in Rhizobium leguminosarum bv. viciae. J Bacteriol 181:3816–3823

    CAS  PubMed  PubMed Central  Google Scholar 

  • Romero M, Otero A (2010) Interceptación de señales de comunicación bacteriana en bacterias aisladas del medio marino. Revista de la Real Academia de Ciencias Exactas. Físicas y Naturales (España) 29:129–206

    CAS  Google Scholar 

  • Sayem SA, Manzo E, Ciavatta L, Tramice A, Cordone A, Zanfardino A, De Felice M, Varcamonti M (2011) Anti-biofilm activity of an exopolysaccharide from a sponge-associated strain of Bacillus licheniformis. Microb Cell Fact 10:74

    PubMed  PubMed Central  Google Scholar 

  • Schuster M, Sexton DJ, Diggle SP, Greenberg EP (2013) Acyl-homoserine lactone quorum sensing: from evolution to application. Annu Rev Microbiol 67:43–63

    CAS  PubMed  Google Scholar 

  • Schembri MA, Kjærgaard K, Klemm P (2003) Global gene expression in Escherichia coli biofilms. Mol Microbiol 48(1):253–267

    CAS  PubMed  Google Scholar 

  • Scutera S, Zucc M, Savoia D (2014) Novel approaches for the design and discovery of quorum-sensing inhibitors. Expert Opin Drug Discov 9:353–366

    CAS  PubMed  Google Scholar 

  • Seo MJ, Lee BS, Pyun YR, Park H (2011) Isolation and characterization of N-acylhomoserine lactonase from the thermophilic bacterium, Geobacillus caldoxylosilyticus YS-8. Biosci Biotech Bioch 75:1789–1795

    CAS  Google Scholar 

  • Shih PC, Huang CT (2002) Effects of quorum-sensing deficiency on Pseudomonas aeruginosa biofilm formation and antibiotic resistance. J Antimicrob Chemotherapy 49(2):309–314

    CAS  Google Scholar 

  • Singh VK, Mishra A, Jha B (2017) Anti-quorum sensing and anti-biofilm activity of delftia tsuruhatensis extract by attenuating the quorum sensing-controlled virulence factor production in Pseudomonas aeruginosa. Front Cell Infect Microbiol 7:337

    PubMed  PubMed Central  Google Scholar 

  • Song Y, Cai ZH, Lao YM, Jin H, Ying KZ, Lin GH, Zhou J (2018) Antibiofilm activity substances derived from coral symbiotic bacterial extract inhibit biofouling by the model strain Pseudomonas aeruginosa PAO1. Microb Biotechnol 11:1090–1105

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun S, Dai X, Sun J, Bu X, Weng C, Li H, Zhu H (2016) A diketopiperazine factor from Rheinheimera aquimaris QSI02 exhibits anti-quorum sensing activity. Sci Rep 6:39637

    CAS  PubMed  PubMed Central  Google Scholar 

  • Teasdale ME, Liu J, Wallace J, Akhlaghi F, Rowley DC (2009) Secondary metabolites produced by the marine bacterium halobacillus salinus that Inhibit quorum sensing-controlled phenotypes in gram-negative bacteria. Appl Environ Microbiol 75:567–572

    CAS  PubMed  Google Scholar 

  • Teasdale ME, Donovan KA, Forschner-Dancause SR, Rowley DC (2011) Gram-positive marine bacteria as a potential resource for the discovery of quorum sensing inhibitors. Mar Biotechnol 13:722–732

    CAS  PubMed  Google Scholar 

  • Tolmacheva AA, Rogozhin EA, Deryabin DG (2014) Antibacterial and quorum sensing regulatory activities of some traditional Eastern-European medicinal plants. Acta Pharm 64:173–186

    CAS  PubMed  Google Scholar 

  • Torres M, Dessaux Y, Llamas I (2019) Saline environments as a source of potential quorum sensing disruptors to control bacterial infections: A review. Mar Drugs 17:191

    CAS  PubMed Central  Google Scholar 

  • Van Dover C (2000) The ecology of deep-sea hydrothermal vents. Princeton University Press, New Jersey

    Google Scholar 

  • Watnick PI, Fullner KJ, Kolter R (1999) A role for the mannose-sensitive hemagglutinin in biofilm formation by Vibrio cholerae El Tor. J bacterial 181(11):3606–3609

    CAS  Google Scholar 

  • Whiteley M, Bangera MG, Bumgarner RE, Parsek MR, Teitzel GM, Lory S, Greenberg EP (2001) Gene expression in Pseudomonas aeruginosa biofilms. Nature 413(6858):860

    CAS  PubMed  Google Scholar 

  • Yaniv K, Golberg K, Kramarsky-Winter E, Marks R, Pushkarev A, Béjà O, Kushmaro A (2017) Functional marine metagenomic screening for anti-quorum sensing and anti-biofilm activity. Biofouling 33:1–13

    CAS  PubMed  Google Scholar 

  • Yohandini H, Julinar M (2015) Isolation and phylogenetic analysis of thermophile community within tanjung sakti hot Spring, South Sumatera, Indonesia. HAYATI J Biosci 22:143–148

    Google Scholar 

  • Zeikus JG (1979) Thermophilic bacteria: ecology, physiology and technology. Enzyme Microb Tech 1:243–252

    CAS  Google Scholar 

  • Zhou JW, Luo HZ, Jiang H, Jian TK, Chen ZQ, Jia AQ (2018) Hordenine: A novel quorum sensing inhibitor and antibiofilm agent against Pseudomonas aeruginosa. J Agric Food Chem 66:1620–1628

    CAS  PubMed  Google Scholar 

  • Zhou JW, Ruan LY, Chen HJ, Luo HZ, Jiang H, Wang JS, Jia AQ (2019) Inhibition of quorum sensing and virulence in serratia marcescens by hordenine. J Agric Food Chem 67:784–795

    CAS  PubMed  Google Scholar 

  • Zhu H, He C-C, Chu Q-H (2011) Inhibition of quorum sensing in Chromobacterium violaceum by pigments extracted from Auricularia auricular. Lett Appl Microbiol 52:269–274

    CAS  PubMed  Google Scholar 

  • Zhu H, Sun SJ (2008) Inhibition of bacterial quorum sensing-regulated behaviors by Tremella fuciformis extract. Curr Microbiol 57:418–422

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financed in part by SIP‐IPN grant. Authors are BEIFI/CONACyT/COFAA/EDI fellows.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruth Noemí Aguila-Ramírez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutiérrez-Almada, K., González-Acosta, B., Borges-Souza, J.M. et al. Marine bacteria associated with shallow hydrothermal systems in the Gulf of California with the capacity to produce biofilm inhibiting compounds. Arch Microbiol 202, 1477–1488 (2020). https://doi.org/10.1007/s00203-020-01851-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-020-01851-w

Keywords

Navigation