Skip to main content

Advertisement

Log in

Microbial inoculants: potential tool for sustainability of agricultural production systems

  • Mini-Review
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Microbial inoculants are gaining importance for attaining sustainable agricultural production systems. Nutrient supply capacity of soil is diminishing continuously owing to soil erosions, degradation, deposition of salts, undesirable elements and metals, water scarcity or excess and imbalanced nutrient supply system. Numerous complementary microbial inoculation combinations are contributing immensely in the management of plant nutrients by way of fixation, solubilization or transformation in soil. Thus, biological wastes and microbial inoculants are alternatives for nutrient demands to bridge future gaps in. A consortium of microorganisms provides enabling and congenial option to maintain their usable capacity for sufficient durations that heads to the positive impact on the microbial activity of soil for desired activities at the target sites. Increased application of agro-chemicals results in deleterious effect on biological system and dependence of future agriculture on these will lead to deterioration in soil health, threats of pollution of water bodies and cumulative effect of these is making production system highly vulnerable and unstable consequently leading to heavy load on the fiscal system. To ameliorate negative impacts, microorganisms are strongly emerging as alternatives for conserving productive capacity for sustainable productions and financial balance of economies. Microbial inoculants that have assumed definite and significant roles for their specificity and necessity and their use in various combinations have emerged as viable and sustainable options to maintain and even enrich the soil health. Since these microbial inoculants are used under varied farming situations and diverse climates with heterogeneous management skills, their efficacies under field conditions remain variable. Thus, it is never-ending process to identify solutions for constraints and application difficulties and further identify newer microbial inoculants for unexplored areas. Adequate timely and quality access of these inoculants to end users is equally important along with developing their skills to utilize these for witnessing desirable and visible impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Albrechtova J, Latr A, Nedorost L, Pokluda R, Posta K, Vosatka M (2012) Dual inoculation with mycorrhizal and saprotrophic fungi applicable in sustainable cultivation improves the yield and nutritive value of onion. Sci World J 2012:1–8

    Google Scholar 

  • Alvarez MI, Sueldo RJ, Barassi CA (1996) Effect of Azospirillum on coleoptiles growth in wheat seedlings under water stress. Cereal Res Commun 24:101–107

    Google Scholar 

  • Artursson V, Finlay RD, Jansson JK (2006) Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ Microbio 8(1):1–10

    CAS  Google Scholar 

  • Babu-Khan S, Yeo C, Martin WL, Duron MR, Rogers R, Goldstein A (1995) Cloning of a mineral phosphate-solubilizing gene from Pseudomonas cepacia. Appl Environ Microbiol 61(3):972–978

    CAS  PubMed  PubMed Central  Google Scholar 

  • Badr MA, Shafei AM, Sharaf El-Deen SH (2006) The dissolution of K and phosphorus bearing minerals by silicate dissolving bacteria and their effect on sorghum growth. Res J Agric Biol Sci 2(1):5–11

    Google Scholar 

  • Barrios E (2007) Soil biota, ecosystem services and land productivity. Ecol Econ 64(2):269–285

    Google Scholar 

  • Berg G (2009) Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18

    CAS  PubMed  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    CAS  PubMed  Google Scholar 

  • Brahmaprakash GP, Sahu PK (2012) Biofertilizers for Sustainability. J Indian Inst Sci 92(1):37–62

    CAS  Google Scholar 

  • Canbolat MY, Bilen S, Çakmakç R, Şahin F, Aydin A (2006) Effect of plant growth-promoting bacteria and soil compaction on barley seedling growth, nutrient uptake, soil properties and rhizosphere microflora. Biol Fertil Soils 42:350–357

    CAS  Google Scholar 

  • Caravaca F, Hernandez T, Garcia C, Roldan A (2002) Improvement of rhizosphere aggregate stability of afforested semiarid plant species subjected to mycorrhizal inoculation and compost addition. Geoderma 108:133–144

    CAS  Google Scholar 

  • Cassan F, Diaz-Zorita M (2016) Azospirillum sp. in current agriculture: From the laboratory to the field. Soil Biol Biochem 103:117–130

    CAS  Google Scholar 

  • Cavalcante VA, Dobereiner J (1988) A new acid tolerant nitrogen-fixing bacterium associated with sugarcane. Plant Soil 108(1):23–31

    Google Scholar 

  • Clark RB, Zeto SK (2000) Mineral acquisition by arbuscular mycor-rhizal plants. J Plant Nutr 23(7):867–902

    CAS  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clement C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action and future prospects. Appl Environ Microbiol 71(9):4951–4959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Creus CM, Sueldo RJ, Barassi CA (1997) Shoot growth and water status in Azospirillum-inoculated wheat seedlings grown under osmotic and salt stresses. Plant Physiol Biochem 35:939–944

    CAS  Google Scholar 

  • Creus CM, Sueldo RJ, Barassi CA (1998) Water relations in Azospirillum inoculated wheat seedlings under osmotic stress. Can J Bot 76(2):238–244

    Google Scholar 

  • Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22(2):107–149

    CAS  Google Scholar 

  • Egamberdiyeva D, Hoflich G (2002) Root colonization and growth promotion of winter wheat and pea by Cellulomonas spp. at different temperatures. J Plant Growth Reg 38(3):219–224

    CAS  Google Scholar 

  • Ehteshamul Haque SRY, Gaffar A (1993) Use of rhizobia in the control of root rot diseases of sunflower, okra, soybean and mung-bean. J Phytopathol 138:157–163

    Google Scholar 

  • Elad Y, Chet I, Katan J (1980) Trichoderma harzianum: a bicontrol agent effective against Sclerotium rolfsii and Rhizoctonia solani. Phytopathology 70(2):119–121

    Google Scholar 

  • Essa AMM, Ibrahim WM, Mahmud RM, ElKassim NA (2015) Potential impact of cyanobacterial exudates on seed germination and antioxidant enzymes of crop plant seedlings. Int J Curr Microbiol Appl Sci 4(6):1010–1024

    CAS  Google Scholar 

  • Estrada P, Mavingui P, Cournoyer B, Fontaine F, Balandreau J, Caballero-Mellado J (2002) A N2-fixing endophytic Burkholderia sp. associated with maize plants cultivated in Mexico. Can J Microbiol 48(4):285–294

    CAS  PubMed  Google Scholar 

  • FAO (1982) Application of nitrogen-fixing systems in soil improvement and management. Food and Agriculture Organization of the United Nations. FAO Soils Bull 49, Rome.

  • Gianinazzi S, Gollotte A, Binet MN, Van Tuinen D, Redecker D, Wipf D (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20(8):519–530

    PubMed  Google Scholar 

  • Gianinazzi S, Vosatka M (2003) Inoculum of arbuscular mycorrhizal fungi for production systems: science meets business. Can J Bot 82(8):1264–1271

    Google Scholar 

  • Gopalkrishnan S, Sathya A, Vijayabharathi RK, Laxmipati Gowda CL, Krishnamurthy L (2015) Plant growth promoting rhizobia: challenges and opportunities. Biotechnol 5(4):355–377

    Google Scholar 

  • Graham RD (2008) Micronutrient deficiencies in crops and their global significance. In: Alloway BJ (ed) Micronutrient deficiencies in global crop production. Springer, New York, pp 41–61

    Google Scholar 

  • Gryndler M, Vosátka M, Hršelová H, Catská V, Chvátalová I, Jansa J (2002) Effect of dual inoculation with arbuscular mycorrhizal fungi and bacteria on growth and mineral nutrition of strawberry. J Plant Nutr 25(6):1341–1358

    CAS  Google Scholar 

  • Henri F, Laurette FN, Annette D, John Q, Wolfgang M, François-Xavier E, Dieudonné N (2008) Solubilization of inorganic phosphates and plant growth promotion by strains of Pseudomonas fluorescens isolated from acidic soils of Cameroon. Afric J Microbiol Res 2:171–178

    Google Scholar 

  • Hinsinger P, Brauman A, Devau N, Gerard F, Jourdan C, Laclau JP, Le Cadre E, Jaillard B, Plassard C (2011) Acquisition of phosphorus and other poorly mobile nutrients by roots. Where do plant nutrition models fail? Plant Soil 348(1–2):29–61

    CAS  Google Scholar 

  • Holguin G, Bashan Y (1996) Nitrogen-fixation by Azospirillum brasilense Cd is promoted when co-cultured with a mangrove rhizosphere bacterium (Staphylococcus sp.). Soil Biol Biochem 28(12):1651–1660

    CAS  Google Scholar 

  • Janouskova M, Krak K, Caklova P, Vosatka M, Storchova H (2012) Intraradical dynamics of two coexisting isolates of the arbuscular mycorrhizal fungus Glomus intraradices sensu lato as estimated by real-time PCR of Mitochondrial DNA. Appl Environ Microbiol 78(10):3630–3637

    PubMed  PubMed Central  Google Scholar 

  • Katyal JC, Rattan RK (1993) Distribution of zinc in Indian soils. Fertilizer News 38(6):15–26

    CAS  Google Scholar 

  • Khan MS, Zaidi A, Wani PA (2007) Role of phosphate solubilizing microorganisms in sustainable agriculture—a review. Agron Sustain Dev 27:29–43

    Google Scholar 

  • Kim KY, Jordan D, Krishnan HB (1997) Rahnella aqualitis, a bacterium isolated from soybean rhizosphere, can solubilize hydroxyapatite. FEMS Microbiol Lett 153(2):273–277

    CAS  Google Scholar 

  • Kim KY, Jordan D, McDonald GA (1998) Effect of phosphate-solubilizing bacteria and vesicular-arbuscular mycorrhizae on tomato growth and soil microbial activity. Biol Fertil Soils 26:79–87

    CAS  Google Scholar 

  • Kizilkaya R (2008) Yield response and nitrogen concentrations of spring wheat (Triticum aestivum) inoculated with Azotobacter chroococcum strains. Ecol Engg 33(2):150–156

    Google Scholar 

  • Kumari KS, Padma Devi SN, Vasandha S (2016) Zinc solubilizing bacterial isolates from the agricultural fields of Coimbatore, Tamil Nadu, India. Curr Sci 110(2):196–205

    Google Scholar 

  • Madhaiyan M, Saravananb VS, Silba DB, Jovic S, Leea H, Thenmozhid R, Harie K, Saa T (2004) Occurrence of Gluconacetobacter diazotrophicus in tropical and subtropical plants of Western Ghats, India. Microbiol Res 159(3):233–243

    CAS  PubMed  Google Scholar 

  • Mahdi SS, Hassan GI, Samoon SA, Rather HA, Dar SA, Zehra B (2010) Biofertilizers in organic agriculture. J Phyt 2(10):42–54

    Google Scholar 

  • Malusá E, Vassilev N (2014) A contribution to set a legal framework for Biofertilizers. Appl Microbiol Biotechnol 98(15):6599–6607

    PubMed  PubMed Central  Google Scholar 

  • Meena VS, Maurya BR, Verma JP (2014) Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiol Res 169(5–6):337–347

    CAS  PubMed  Google Scholar 

  • Mehnaz S, Lazarovits G (2006) Inoculation effects of Pseudomonas putida, Gluconacetobacter azotocaptans and Azospirillum lipoferum on corn plant growth under greenhouse conditions. Microbiol Ecol 51(3):326–335

    Google Scholar 

  • Mia MAB, Shamsuddin ZH (2010) Rhizobium as a crop enhancer and biofertilizer for increased cereal production. Afric J Biotechnol 9(37):6001–6009

    Google Scholar 

  • Mia MAB, Shamsuddin ZH, Mahmood M (2012) Effects of rhizobia and plant growth promoting bacteria inoculation on germination and seedling vigor of lowland rice. Afric J Biotechnol 11(16):3758–3765

    Google Scholar 

  • Mirza M, Mehnaz S, Normand P, Prigent-Combaret C, Moenne-Loccoz M, Bally R, Malik KA (2006) Molecular characterization and PCR detection of a nitrogen-fixing Pseudomonas strain promoting rice growth. Biol Fertil Soils 43(2):163–170

    CAS  Google Scholar 

  • Muentz A (1890) Surla decomposition desroches etla formation de la terre arable. CR Acad Sci 110:1370–1372

    Google Scholar 

  • Muthukumarasamy R, Kang UG, Park KD, Jeon WT, Park CY, Cho YS, Kwon SW, Song J, Roh DH, Revathi G (2007) Enumeration, isolation and identification of diazotrophs from Korean wetland rice varieties grown with long-term application of N and compost and their short-term inoculation effect on rice plants. J Appl Microbiol 102(4):981–991

    CAS  PubMed  Google Scholar 

  • Nelson E (1988) Biological control of Pythium seed rot and pre-emergence damping-off of cotton with Enterobacter cloacae and Erwinia herbicola applied as seed treatments. Plant Dis 72:140–142

    Google Scholar 

  • Oehl F, Sieverding E, Ineichen K, Ris EA, Boller T, Wiemken A (2005) Community structure of arbuscular mycorrhizal fungi at different soil depths in extensively and intensively managed agro ecosystems. New Phytol 165:273–283

    PubMed  Google Scholar 

  • Oehl F, Sieverding E, Mader P, Sieverding E, Mader P, Dubois D, Ineichen K, Boller T, Wiemken A (2004) Impact of long-term conventional and organic farming on the diversity of arbuscular mycorrhizal fungi. Oecologia 138(4):574–583

    PubMed  Google Scholar 

  • Ogut M, Er F, Kandemir N (2010) Phosphate solubilization potentials of soil Acinetobacter strains. Biol Fertil Soils 46(7):707–715

    CAS  Google Scholar 

  • Owen D, Williams AP, Griffith GW, Withers PJA (2014) Use of commercial bio-inoculants to increase agricultural production through improved phosphorus acquisition. Appl Soil Ecol 86:41–54

    Google Scholar 

  • Parmar P, Sindhu SS (2013) Potassium solubilization by rhizosphere bacteria: influence of nutritional and environmental conditions. J Microbiol Res 3(1):25–31

    Google Scholar 

  • Perner H, Rohn S, Driemel G, Batt N, Schwarz D, Kroh LW, George E (2008) Effect of nitrogen species supply and mycorrhizal colonization on organo sulfur and phenolic compounds in onions. J Agric Food Chem 56(10):3538–3545

    CAS  PubMed  Google Scholar 

  • Pindi PK, Satyanarayana SDV (2012) Liquid microbial consortium—a potential tool for sustainable soil health. J Biofertil Biopestici 3:124

    Google Scholar 

  • Raj SA (2007): Bio-fertilizers for micronutrients. Biofertil Newsl pp 810.

  • Rana A, Joshi M, Prasanna R, Shivay YS, Nain L (2012) Biofortification of wheat through inoculation of plant growth promoting rhizobacteria and cyanobacteria. Eur J Soil Biol 50:118–126

    CAS  Google Scholar 

  • Richardson A, Simpson R (2011) Soil microorganisms mediating phosphorus availability. Plant Physiol 156(3):989–996

    CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson A, Barea J, McNeill A, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321(1–2):305–339

    CAS  Google Scholar 

  • Rivera-Becerril F, Calantzis C, Turnau K, Caussanel JP, Belimov AA, Gianinazzi S, Strasse RJ, Gianinazzi-Pearson V (2002) Cadmium accumulation and buffering of cadmium-induced stress by arbuscular mycorrhiza in three Pisum sativum L. genotypes. J Exp Bot 53:1177–1185

    CAS  PubMed  Google Scholar 

  • Rodrıguez H, Fraga R, Gonzalez T, Bashan Y (2006) Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil 287(1–2):15–21

    Google Scholar 

  • Schwieger F, Tebbe CC (2000) Effect of field inoculation with Sinorhizobium meliloti L33 on the composition of bacterial communities in rhizospheres of a target plant (Medicago sativa) and a non-target plant (Chenopodium album)—linking of 16S rRNA gene-based single-strand conformation polymorphism community profiles to the diversity of cultivated bacteria. Appl Environ Microbiol 66(8):3556–3565

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sekhar M, Riotte J, Ruiz L, Jouquet P, Braun JJ (2016) Influences of climate and agriculture on water and biogeochemical cycles: Kabini critical zone observatory. Proc Indian Nat Sci Acad 82:833–846

    Google Scholar 

  • Sheng XF, Huang WY (2002) Mechanism of potassium release from feldspar affected by the strain NBT of silicate bacterium. Acta Pedol Sin 39(6):863–871

    CAS  Google Scholar 

  • Singh G, Biswas DR, Marwah TS (2010) Mobilization of potassium from waste mica by plant growth promoting rhizobacteria and its assimilation by maize (Zea mays) and wheat (Triticum aestivum L.). J Plant Nutr 33(8):1236–1251

    CAS  Google Scholar 

  • Singh NK, Chaudhary FK, Patel DB (2013) Effectiveness of Azotobacter bio-inoculant for wheat grown under dryland conditions. J Environ Biol 34(5):927–932

    CAS  PubMed  Google Scholar 

  • Smith RL, Bouton JH, Schank SC, Quesenberry KH, Tyler ME, Milam JR, Gaskins MH, Littell RC (1976) Nitrogen fixation in grasses inoculated with Spirillum lipoferum. Science 193(4257):1003–1005

    CAS  PubMed  Google Scholar 

  • Somers E, Ptacek D, Gysegom P, Srinivasan M, Vanderleyden J (2005) Azospirillum brasilense produces the auxin-like phenylacetic acid by using the key enzyme for indole-3-acetic acid biosynthesis. Appl Environ Microbiol 71(4):1803–1810

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sugumaran P, Janarthanam B (2007) Solubilization of potassium containing minerals by bacteria and their effect on plant growth. World J Agric Sci 3:350–355

    Google Scholar 

  • Suman A, Gaur A, Shrivastava A, Yadav RL (2005) Improving sugarcane growth and nutrient uptake by inoculating Gluconacetobacter diazotrophicus. Plant Growth Regul 47(2–3):155–162

    CAS  Google Scholar 

  • Suman A, Shrivastava A, Gaur A, Singh P, Singh J, Yadav RL (2008) Nitrogen use efficiency of sugarcane in relation to its BNF potential and population of endophytic diazotrophs at different N levels. Plant Growth Regul 54(1):1–11

    CAS  Google Scholar 

  • Thomas RJ, Akhtar-Schuster M, Stringer LC, Marques MJ, Escadafal R, Abraham E, Enne G (2012) Fertile ground? Options for a science-policy platform for land. Environ Sci Pollut 16:122–135

    Google Scholar 

  • Tilak KVBR, Ranganayaki N, Manoharachari C (2006) Synergistic effects of plant-growth promoting rhizobacteria and Rhizobium on nodulation and nitrogen fixation by pigeonpea (Cajanus cajan). Eur J Soil Sci 57(1):67–71

    CAS  Google Scholar 

  • Trabelsi M, Mhamdi R (2013) Microbial inoculants and their impact on soil microbial communities—a review. Biomed Res Int 2013:1–11

    Google Scholar 

  • Transparency Market Research (2014) Biofertilizers (Nitrogen fixing, phosphate solubilizing and others) market for seed treatment and soil treatment applications– global industry analysis, size, share, growth, trends and forecast, 2013–2019. Transparency Market Research, Allbany

    Google Scholar 

  • Vaid SK, Kumar B, Sharma A, Shukla AK, Srivastava PC (2014) Effect of zinc solubilizing bacteria on growth promotion and zinc nutrition of rice. J Soil Sci Plant Nutr 14(4):889–910

    Google Scholar 

  • Vestberg M, Cassells AC, Schubert A, Cordier C, Gianinazzi S (2002) Arbuscular mycorrhizal fungi and micropropagation of high value crops. In: Giananazzi S, Schüepp H, Barea JM, Hasselwandter K (eds) Mycorrhizal technology in agriculture. Birkhäuser Verlag Basel, Switzerland, pp 223–233

    Google Scholar 

  • Vosatka M, Albrechtova J (2009) Microbial strategies for crop improvement. In: Khan MS, Zaidi A, Musarrat J (eds) Benefits of arbuscular mycorrhizal fungi to sustainable crop production. Springer, Dordrecht, pp 205–225

    Google Scholar 

  • Vosátka M, Dodd JC (2002) Ecological considerations for successful application of arbuscular mycorrhizal fungi inoculum. In: Gianinazzi S, Schuepp H, Barea JM, Haselwandter K (eds) Mycorrhizal technology in agriculture. Birkhauser Verlag, Basel, pp 235–248

    Google Scholar 

  • Wakelin SA, Warren RA, Harvey PR, Ryder MH (2004) Phosphate solubilization by Penicillium spp. closely associated with wheat roots. Biol Fertil Soils 40(1):36–43

    CAS  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52(Suppl 1):487–511

    CAS  PubMed  Google Scholar 

  • WHO (2002) The World Health Report- reducing risks, promoting healthy life. WHO, Geneva, p 168

    Google Scholar 

  • Wu SC, Caob ZH, Lib ZG, Cheunga KC, Wonga MH (2005) Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma 125:155–166

    Google Scholar 

  • Yadav AK, Chandra K (2014) Mass production and quality control of microbial inoculants. Proc Indian Natn Sci Acad 80(2):483–489

    Google Scholar 

  • Zahra MK, Monib MS, Abdel-AI Heggo A (1984) Significance of soil inoculation with silicate bacteria. Zentralblatt fur Mickobiologi 139(5):349–357

    CAS  Google Scholar 

  • Zaki K, Misaghi I, Heydari A (1998) Control of cotton seedling damping-off in the field by Burkholderia (Pseudomonas) cepacia. Plant Dis 82(3):291–293

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sammauria.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Erko Stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sammauria, R., Kumawat, S., Kumawat, P. et al. Microbial inoculants: potential tool for sustainability of agricultural production systems. Arch Microbiol 202, 677–693 (2020). https://doi.org/10.1007/s00203-019-01795-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-019-01795-w

Keywords

Navigation